2,454 research outputs found

    Parallel and Distributed Data Mining

    Get PDF

    Research summary, January 1989 - June 1990

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established at NASA ARC in June of 1983. RIACS is privately operated by the Universities Space Research Association (USRA), a consortium of 62 universities with graduate programs in the aerospace sciences, under a Cooperative Agreement with NASA. RIACS serves as the representative of the USRA universities at ARC. This document reports our activities and accomplishments for the period 1 Jan. 1989 - 30 Jun. 1990. The following topics are covered: learning systems, networked systems, and parallel systems

    CPAS/CCM experiences: Perspectives for AI/ES research in accounting

    Get PDF
    https://egrove.olemiss.edu/dl_proceedings/1111/thumbnail.jp

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    A Demand Based Load Balanced Service Replication Model

    Get PDF
    Cloud computing allows service users and providers to access the applications, logical resources and files on any computer with ease. A cloud service has three distinct characteristics that differentiate it from traditional hosting. It is sold on demand, typically by the minute or the hour; it is elastic. It is a way to increase capacity or add capabilities on the fly without investing in new infrastructure, training new personnel, or licensing new software. It not only promises reliable services delivered through next-generation data centers that are built on compute and storage virtualization technologies but also addresses the key issues such as scalability, reliability, fault tolerance and file load balancing. The one way to achieve this is through service replication across different machines coupled with load balancing. Though replication potentially improves fault tolerance, it leads to the problem of ensuring consistency of replicas when certain service is updated or modified. However, fewer replicas also decrease concurrency and the level of service availability. A balanced synchronization between replication mechanism and consistency not only ensures highly reliable and fault tolerant system but also improves system performance significantly. This paper presents a load balancing based service replication model that creates a replica on other servers on the basis of number of service accesses. The simulation results indicate that the proposed model reduces the number of messages exchanged for service replication by 25-55% thus improving the overall system performance significantly. Also in case of CPU load based file replication, it is observed that file access time reduces by 5.56%-7.65%

    Building Digital Libraries: Data Capture

    Get PDF
    • …
    corecore