1,377 research outputs found

    Enhanced JavaScript learning using code quality tools and a rule-based system in the FLIP Exploratory Learning Environment

    Get PDF
    The ‘FLIP Learning’ (Flexible, Intelligent and Personalised Learning) is an Exploratory Learning Environment (ELE) for teaching elementary programming to beginners using JavaScript. This paper presents the subsystem that is used to generate individualised real-time support to students depending on their initial misconceptions. The subsystem is intended to be used primarily in the early stages of student engagement in order to help them overcome the constraints of their Zone of Proximal Development (ZPD) with minimal assistance from teachers

    Adaptive User Interfaces for Intelligent E-Learning: Issues and Trends

    Get PDF
    Adaptive User Interfaces have a long history rooted in the emergence of such eminent technologies as Artificial Intelligence, Soft Computing, Graphical User Interface, JAVA, Internet, and Mobile Services. More specifically, the advent and advancement of the Web and Mobile Learning Services has brought forward adaptivity as an immensely important issue for both efficacy and acceptability of such services. The success of such a learning process depends on the intelligent context-oriented presentation of the domain knowledge and its adaptivity in terms of complexity and granularity consistent to the learner’s cognitive level/progress. Researchers have always deemed adaptive user interfaces as a promising solution in this regard. However, the richness in the human behavior, technological opportunities, and contextual nature of information offers daunting challenges. These require creativity, cross-domain synergy, cross-cultural and cross-demographic understanding, and an adequate representation of mission and conception of the task. This paper provides a review of state-of-the-art in adaptive user interface research in Intelligent Multimedia Educational Systems and related areas with an emphasis on core issues and future directions

    A review of tertiary BIM education for advanced engineering communication with visualization

    Get PDF
    SPECT with Tc-99m-labeled agents is better able to detect viability after nitrate administration. Nitrates induce vasoclilation and may increase blood flow to severely hypoperfused but viable myocardium, thereby enhancing tracer delivery and improving the detection of viability. Quantitative data on the changes in blood flow are lacking in SPECT but can be provided by PET. The aim of the present study was to use PET to evaluate whether nitrate administration increases blood flow to chronically dysfunctional but viable myocardium. Methods: N-13-Ammonia PET was used to quantitatively assess blood flow, and F-18-FDG PET was used as the gold standard to detect viable myocardium. Twenty-five patients with chronic ischemic left ventricular dysfunction underwent N-13-ammonia PET at rest and after nitrate administration. Results: A significant increase in nitrate-enhanced blood flow was observed in viable segments (from 0.55 +/- 0.15 to 0.68 +/- 0.24 mL/min/g, P <0.05). No statistically significant change in blood flow was observed in nonviable segments (0.60 +/- 0.20 vs. 0.55 +/- 0.18 mL/min/g). A ratio of at least 1.1 for nitrate-enhanced flow to resting flow allowed optimal detection of viable myocardium, yielding a sensitivity of 82% with a specificity of 100%. Conclusion: N-13-Ammonia PET showed a significant increase in nitrate-enhanced blood flow in viable myocardium, whereas blood flow remained unchanged after nitrate administration in nonviable myocardium. Nitrate use during myocardial perfusion imaging will lead to improved assessment of myocardial viability

    Expert-Generated and Auto-Generated Socratic Tutoring Systems For Code Comprehension

    Get PDF
    Programming skills are a vital part of many disciplines but can be challenging to teach and learn. Thus, the programming courses are considered difficult and a major stumbling block. To overcome these challenges, students could benefit from extensive individual support such as tutoring, but there are simply not enough qualified tutors available to meet rising demands.A potential solution is the development of intelligent tutoring systems (ITSs), which offer individualized, one-on-one instruction. Such systems can offer the support to make programming instruction more effective, scalable and reduce existing teachers\u27 workloads.This dissertation demonstrates how conversational ITSs and the Socratic method of teaching can improve a novice\u27s understanding of programming concepts and, in particular, the scaffolding of code comprehension processes. Furthermore, this work provides a novel method to automatically author a Socratic dialogue-based ITS. Indeed, two major outcomes of this work are a Socratic dialogue-based ITS and an automated dialogue authoring tool, which generates full Socratic dialogue from Java source code.The key objectives of this dissertation were, first, to determine whether the Socratic method would be effective at eliciting learners to engage in self-explanations with the help of the Socratic Tutor ITS and, second, to assess the quality of Socratic Author\u27s auto-generated tutorial dialogue. Thus, the work presented here sought to answer two main research questions: (1) can a Socratic ITS lead to improved code comprehension? and (2) to what extent can Socratic dialogue be generated automatically?In sum, this research helps establish a relationship between code comprehension and the use of the Socratic method in learning computer programming. Furthermore, the work introduces a novel approach for generating Socratic dialogue from source code with examples for the Java programming language. The auto-authoring tool could help teachers and ITS developers create tutorial dialogues automatically from Java code without requiring nondomain knowledge. To the best of our knowledge, no such auto-generation of tutorial dialogues from source code has been done before and thus constituting a premiere

    Opening up the interpretation process in an open learner model

    Get PDF
    Opening a model of the learner is a potentially complex operation. There are many aspects of the learner that can be modelled, and many of these aspects may need to be opened in different ways. In addition, there may be complicated interactions between these aspects which raise questions both about the accuracy of the underlying model and the methods for representing a holistic view of the model. There can also be complex processes involved in inferring the learner's state, and opening up views onto these processes - which leads to the issues that are the main focus of this paper: namely, how can we open up the process of interpreting the learner's behaviour in such a manner that the learner can both understand the process and challenge the interpretation in a meaningful manner. The paper provides a description of the design and implementation of an open learner model (termed the xOLM) which features an approach to breaking free from the limitations of "black box" interpretation. This approach is based on a Toulmin-like argumentation structure together with a form of data fusion based on an adaptation of Dempster-Shafer. However, the approach is not without its problems. The paper ends with a discussion of the possible ways in which open learner models might open up the interpretation process even more effectively

    An activity theory perspective on contradictions in flipped mathematics classrooms at the university level

    Get PDF
    Author´s accepted manuscript (postprint).This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Mathematical Education in Science and Technology on 24/03/2019, available online: http://www.tandfonline.com/10.1080/0020739X.2019.1591533.acceptedVersio

    Computer aided learning for entry level accountancy students

    Get PDF
    Available from British Library Document Supply Centre-DSC:DXN049783 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Automated Feedback for Learning Code Refactoring

    Get PDF

    User modelling approach to computer based advice generation

    Get PDF

    Paradigms for the design of multimedia learning environments in engineering

    Get PDF
    The starting point for this research was the belief that interactive multimedia learning environments represent a significant evolution in computer based learning and therefore their design requires a re-examination of the underlying principles of learning and knowledge representation. Current multimedia learning environments (MLEs) can be seen as descendants of the earlier technologies of computer-aided learning (CAL), intelligent tutoring systems (ITS) and videodisc-based learning systems. As such they can benefit from much of the wisdom which emerged from those technologies. However, multimedia can be distinguished from earlier technologies by its much greater facility in bringing to the learner high levels of interaction with and control over still and moving image, animation, sound and graphics. Our intuition tells us that this facility has the potential to create learning environments which are not merely substitutes for "live" teaching, but which are capable of elucidating complex conceptual knowledge in ways which have not previously been possible. If the potential of interactive multimedia for learning is to be properly exploited then it needs to be better understood. MLEs should not just be regarded as a slicker version of CAL, ITS or videodisc but a new technology requiring a reinterpretation of the existing theories of learning and knowledge representation. The work described in this thesis aims to contribute to a better understanding of the ways in which MLEs can aid learning. A knowledge engineering approach was taken to the design of a MLE for civil engineers. This involved analysing in detail the knowledge content of the learning domain in terms of different paradigms of human learning and knowledge representation. From this basis, a design strategy was developed which matched the nature of the domain knowledge to the most appropriate delivery techniques. The Cognitive Apprenticeship Model (CAM) was shown to be able to support the integration and presentation of the different categories of knowledge in a coherent instructional framework. It is concluded that this approach is helpful in enabling designers of multimedia systems both to capture and to present a rich picture of the domain. The focus of the thesis is concentrated on the domain of Civil Engineering and the learning of concepts and design skills within that domain. However, much of it could be extended to other highly visual domains such as mechanical engineering. Many of the points can also be seen to be much more widely relevant to the design of any MLE.Engineering and Physical Sciences Research Counci
    corecore