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ABSTRACT

Alshaikh, Zeyad, Ph.D. The University of Memphis. June, 2021.
Expert-Generated and Auto-Generated Socratic Tutorial Dialogue to Increase
Programming Comprehension. Major Professor: Vasile Rus, Ph.D.

Programming skills are a vital part of many disciplines but can be

challenging to teach and learn. Thus, the programming courses are considered

di�cult and a major stumbling block. To overcome these challenges, students could

benefit from extensive individual support such as tutoring, but there are simply not

enough qualified tutors available to meet rising demands.

A potential solution is the development of intelligent tutoring systems

(ITSs), which o↵er individualized, one-on-one instruction. Such systems can o↵er

the support to make programming instruction more e↵ective, scalable and reduce

existing teachers’ workloads.

This dissertation demonstrates how conversational ITSs and the Socratic

method of teaching can improve a novice’s understanding of programming concepts

and, in particular, the sca↵olding of code comprehension processes. Furthermore,

this work provides a novel method to automatically author a Socratic

dialogue-based ITS. Indeed, two major outcomes of this work are a Socratic

dialogue-based ITS and an automated dialogue authoring tool, which generates full

Socratic dialogue from Java source code.

The key objectives of this dissertation were, first, to determine whether the

Socratic method would be e↵ective at eliciting learners to engage in

self-explanations with the help of the Socratic Tutor ITS and, second, to assess the

quality of Socratic Author’s auto-generated tutorial dialogue. Thus, the work

presented here sought to answer two main research questions: (1) can a Socratic

ITS lead to improved code comprehension? and (2) to what extent can Socratic

dialogue be generated automatically?

In sum, this research helps establish a relationship between code
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comprehension and the use of the Socratic method in learning computer

programming. Furthermore, the work introduces a novel approach for generating

Socratic dialogue from source code with examples for the Java programming

language. The auto-authoring tool could help teachers and ITS developers create

tutorial dialogues automatically from Java code without requiring non–domain

knowledge. To the best of our knowledge, no such auto-generation of tutorial

dialogues from source code has been done before and thus constituting a premiere.
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Chapter 1

Introduction

Computer programming has become an increasingly integral part of many

disciplines, such as math, science, and engineering. Despite this growing

importance, introductory programming courses routinely su↵er from high rates

(e.g., 30-40%) of dropout and failure (Beaubouef & Mason, 2005; Bennedsen &

Caspersen, 2007, 2019; Mcgettrick et al., 2005; Petersen et al., 2016; Robins et al.,

2003). Such courses are often cited as being di�cult, frustrating, and a stumbling

block for students (Lane & VanLehn, 2004; Piteira & Costa, 2013; Proulx, 2000). A

major reason computer programming is a challenging subject to teach or learn is its

complexity and the need for extensive practice (Medeiros et al., 2018).

The process of computer programming can be broken down into three main

phases (problem-solving and design, implementation, and testing and debugging),

with each phase requiring di↵erent skills. The literature has shown that students

struggle in each phase (Bain & Barnes, 2014; Bosse & Gerosa, 2017; Lane &

VanLehn, 2003; Truong et al., 2005).

The problem-solving and design phase requires logic, abstract thinking, and

domain knowledge. However, novice programmers often fail to engage in meaningful

planning and instead jump straight to the implementation phase (Lane & VanLehn,

2004). As a result, (C.-K. Chang, 2014) and (Tom, 2015) found that many of the

bugs in students’ programs were not related to the programming language but were

instead the result of conceptual understanding of problem-solving strategies.

Moreover, a one-year analysis of students’ assignments revealed that 22% of

programming bugs were related to problem-solving skills (Bryce et al., 2010).

Furthermore, a study by Bain and Barnes (2014) showed that 50% of students had

no problem-solving strategies beyond looking up individual problems online as they

arose.

1



The implementation phase requires knowledge of syntax and semantics

involving memory and compression processes (Renumol et al., 2009). Writing a

computer program (i.e., implementation) requires knowledge of programming

concepts, e.g., variables, conditions, and loops, as well as knowledge of the syntax

and semantics of the target language. In this phase, students implement and test

out what they have learned in the classroom. This phase is also problematic; e.g.,

(Lane & VanLehn, 2003) found that students struggled to write a fully functional

program without help, and (Bryce et al., 2010) showed that 78% of students’

programming bugs were due to a combination of logic and syntax problems.

The final phase of the programming process is testing and debugging, where

students focus on validating their program’s outputs and fixing any bugs.

Debugging a program requires a solid knowledge of the program’s operation and the

programming language as well as problem solving skills (Bryce et al., 2010).

Therefore, novice programmers are often wasting hours trying to fix simple bugs

and understanding error messages. As a result, debugging has become known to be

di�cult for novice programmers and to be a cause of frustration and attrition for

many students (Alqadi & Maletic, 2017).

As noted above, computer programming cannot be e↵ectively learned

without extensive practice (Núñez et al., 2008), with students needing to write

many programs and solve many exercises before they can be considered proficient.

During this learning process, students need ongoing individual advice and prompt

feedback from experts (Hattori & Ishii, 1999) that is tailored to their needs based

on constructivist theories of learning. However, with more and more students taking

programming courses, few qualified teachers (Sha↵er, 2005), and limited school

budgets, individual attention for all students is di�cult to achieve using traditional

means (A. T. Corbett et al., 2001; Xu & Sarrafzadeh, 2004). In addition, students

often practice at home or take online or distance learning courses, which provide
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limited teacher interaction and assistance. Therefore, there is a need for education

technology that o↵ers individualized instruction whenever and wherever the student

needs it (Wang, 2011; Weber & Brusilovsky, 2001).

Tutoring is one of the most e↵ective forms of instruction. It has been

demonstrated to produce mean learning gains ranging from 0.4–0.9 (with

non-expert, cross-aged, or peer tutors) to 0.8–2.3 standard deviations (with expert

tutors) over students only receiving traditional classroom instruction (Graesser et

al., 2009; Person et al., 2007; VanLehn et al., 2007). Encouraged by the e↵ectiveness

of one-on-one human tutoring, computer programs that mimic human tutors have

been built to try to ensure every student has access to tutoring. Developing such

programs is important because it is logistically impossible to provide all students

who need individualized help with a human tutor because there are millions of

students all over the world attending introductory programming courses (Bennedsen

& Caspersen, 2007), and there are not enough human tutors available for everyone

(Nguyen et al., 2014). Teachers serving large programming classes also cannot

a↵ord to o↵er individualized instruction to all struggling students.

Studies have shown that intelligent tutoring systems (ITSs) can provide all

students with individualized, one-on-one tutoring, improve the quality and

e↵ectiveness of computer programming instruction, and reduce teacher workloads

(Truong et al., 2005; Pillay, 2003). As a result, many ITSs were developed as early

as 1975 to aid students with di↵erent programming phases. For instance, Automatic

Tutor (Danielson & Nievergelt, 1975) and xTEx-Sys for programming (Dadic et al.,

2006) were meant to help students with planning and design, whereas systems such

as PROUST (Johnson & Soloway, 1985) were designed to help students find logic

and syntax errors. In addition, some ITSs have targeted one or more programming

concepts; e.g., Meno-ii (E. M. Soloway et al., 1981) and RAPTIS (Woods & Warren,
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1995) focus on the loop concept, while ProPL (Lane & VanLehn, 2004) targets

conditions and loops.

Despite these advantages, creating content for ITSs is a challenge and

requires expertise in cognitive science and programming. Furthermore, constructing

such content is tedious, error-prone, and time intensive (He↵ernan et al., 2006).

Therefore, many authoring systems have been developed in di↵erent domains, such

as physics, mathematics, and public policy, to increase the accessibility and

a↵ordability of authoring ITSs (He↵ernan et al., 2006). One successful example of

an authoring system was developed by (Jordan et al., 2001) that reduced the

development time to three months. The system used a graphical interface for

teachers to construct tutoring dialogue about physics. Another successful example

developed by (V. Aleven et al., 2009) uses a graphical user interface to speed up the

development of instructional components, such as hints and just-in-time messages.

Research Goals

This work aims to explore an application of natural language technology in

an e↵ort to help novice programmers develop a deeper understanding of

programming concepts. The findings demonstrate how natural language technology

and guided self-explanation through the Socratic method of teaching can improve

understanding of programming concepts. The study has produced a Socratic

dialogue-based ITS called “Socratic Tutor” and an automated dialogue authoring

tool called “Socratic Author” that generates full Socratic dialogue from Java source

code.

Research Questions

The research questions that guided this study were (1) can a Socratic ITS

lead to improved code comprehension? and (2) to what extent can Socratic dialogue

be developed automatically? Therefore, the detailed questions presented in Table 1

focus on the Socratic method’s e↵ectiveness in teaching programming by using an
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Table 1: Research questions for the ITS (Socratic Tutor)

Question
How much do students improve their learning of basic programming concepts when
using Socratic Tutor?
How much can Socratic Tutor help students with low prior programming knowledge
improve their mastery of basic programming concepts?
How much do students learn about each targeted programming concept when using
Socratic Tutor?
What is the relationship between Socratic Tutor’s sca↵olding questions and learning
gains?
How does the type of sca↵olding questions a↵ect students’ learning processes?
How much do students explain the behavior of Java code?
What is the relationship between the self-explanation volume of Java code and learn-
ing gains?
What is the relationship between the self-explanation volume of Java code and qual-
ity?
How does self-e�cacy a↵ect students’ learning gains?
How much does Socratic Tutor a↵ect students’ self-confidence?

ITS (Socratic Tutor), while Table 2 shows detailed questions to assess the

e↵ectiveness of the authoring tool (Socratic Author).

Initial Contributions and Future Work

This study developed a novel Socratic-based ITS to assist learners with

understanding code. Therefore, the findings could help establish a relationship

between code comprehension and the use of the Socratic method in computer

science as well as a relationship between learning gains and student responses in

open-ended question dialogue. Furthermore, the work introduces a novel approach

for generating Socratic dialogue from Java source code. This approach could help

teachers and ITS developers automatically create dialogue that does not require

non–domain knowledge and can be archived by entering Java code and clicking a

generation button.

Chapter 2 describes the related research on ITSs and authoring tools,

examines previous e↵orts in the computer programming field, and illustrates the

need for ITSs and authoring tools that focus on source code comprehension.
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Table 2: Research questions for the automated authoring tool (Socratic Author)

Question
Can Socratic Author generate syntactically correct questions, , sca↵olding questions,
and answers?
Can Socratic Author generate semantically correct questions, sca↵olding questions,
and answers?
Can Socratic Author generate coherent and consistent dialogue?
Can Socratic Author generate dialogue that covers all important programming con-
cepts presented in the code?
How much do students learn when using auto-generated dialogue compared to expert-
generated dialogue?
How e↵ectively does the auto-generated dialogue help students understand code ex-
amples?
How e↵ectively does the auto-generated dialogue help students understand core pro-
gramming concepts?

Chapter 3 presents the novel Socratic Tutor ITS for source code comprehension and

describes the general architecture of the system as well as the implementation

details of each model and how they interact with each other. It also presents

preliminary findings from an experiment on introductory computer programming

students. Chapter 4 illustrates the findings from a controlled experiment on

introductory computer programming students, while Chapter 5 describes the

architecture and design of the novel authoring tool and plans for future work. It

also presents preliminary findings from an experiment on introductory computer

programming students. Chapter 6 evaluates the authoring tool, and Chapter 7

concludes the study with suggestions for future directions.
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Chapter 2

Related Research

Intelligent tutoring systems (ITSs) can provide individualized, one-on-one

instruction for all students, improve the quality of programming education, and

reduce teacher workloads (Anderson & Skwarecki, 1986; Pillay, 2003; Truong et al.,

2005). The literature shows many successful examples of ITSs for computer

programming, such as OOPS (Gálvez et al., 2009) and ITEM/IP (Brusilovsky,

1992), as well as for other domains, such as science and physics (Rus et al., 2013).

This chapter provides a literature review surveying 91 programming ITSs,

focusing on 44 that contain the four main modules they typically use: domain

expert, student, pedagogy, and interface. First, the chapter presents an overview of

the architecture of an ITS and the main modules used by most programming ITSs.

It then discusses each module in detail, highlighting the most commonly used

techniques. After that, it illustrates the domain coverage of the most popular ITSs

and reviews the types of feedback provided by programming ITSs. Finally, it

summarizes the e↵ectiveness and performance results of ITSs in terms of learning

gains and other metrics.

Intelligent Tutoring Systems for Programming

An ITS is a computer-based system that delivers instruction in a flexible,

personalized way by simulating one-on-one human tutoring (Butz et al., 2006). The

ITS relies on ideas, theories, techniques, and technologies from such domains as

artificial intelligence, computational linguistics, cognitive science, and education

(Sleeman & Brown, 1982; Rus et al., 2013). A general architecture for an ITS was

proposed by Wenger (1986), as shown in Figure 1, which was followed here because

it has been widely used. The Wenger architecture consists of four main components:

a domain expert module, a student module, a pedagogical module, and an interface

module. Other architectures have been proposed, such as the one by Pillay (2003),
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Figure 1. Intelligent tutoring system architecture

which was explicitly designed for a programming ITS and includes four more

modules: code specification, explanations, problems, and learning/experience.

The following sections discuss the main modules of a generic ITS in detail

and illustrate the most commonly used techniques.

Domain Expert Module

The domain expert module represents expertise in a domain or domain

knowledge (Song et al., 1997). In a programming ITS, this module should facilitate

the understanding of student responses about programs. Furthermore, the module

should give a computational representation of the core knowledge a student is
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supposed to acquire, including basic programming concepts, e.g., loops, conditions,

and the syntax of a specific programming language (Song et al., 1997). More than

16 techniques have been used to model the domain expert module for teaching

programming. The sections below discuss the most commonly used techniques, as

shown in Table 3.

Curriculum Information Network (CIN)

Curriculum information network (CIN) was introduced by (Wescourt et al.,

1977) to store and represent the relationships between course materials. The

learning material is composed of programming concepts and skills that students

need to master, and a group of skills defines a programming technique. Each task in

the network is linked to one or more skills that are required to solve the task.

The main advantage of the CIN is generalization, as the model can be used

in other domains, such as physics, math, or statistics. Furthermore, the model was

created by experts in the field with a clear understanding of basic concepts and

their relationships. These factors make it easier to create a well-structured

curriculum and learning path, which can increase student motivation (Blank et al.,

2005). However, having an expert write all of this material can be more

time-consuming than using automated techniques. By looking at systems that have

implemented CIN, such as BIP (Barr et al., 1976) and CIMEL ITS (Blank et al.,

2005), it is clear they have only included a small subset of programming concepts.

Constraint-Based Modeling (CBM)

Constraint-based modeling (CBM) was introduced by (Ohlsson, 1994) for

domain modeling based on learning from errors theory. This approach helps

students who lack declarative knowledge to identify their errors. Systems such as

OOPs (Gálvez et al., 2009), J-LATTE (Holland et al., 2009), and SQL-Tutor

(Mitrović, 1998) have used CBM in creating the domain expert module. The model

is constructed by using constraints that illustrate features of correct solutions,

9



where each constraint follows the form “IF Cr is satisfied, THEN Cs should also be

satisfied; otherwise, a principle is being violated.” The two constraints Cr and Cs

are the relevance condition and the satisfaction condition, where Cr represents the

status of the problem and Cs represents the feature that the solution cannot violate.

The most notable advantage of CBM is the ability to handle di↵erent correct

solutions through a set of constraints that each correct solution must adhere to

(Holland et al., 2009). In addition, CBM is computationally e�cient but needs to

be manually constructed, and it is unclear whether CBM can provide the right

abstraction for di↵erent domains (Mitrović, 1998).

Semantic Network

A semantic network is a graph structure representing knowledge, where

vertices represent knowledge and edges represent semantic relationships (Liu et al.,

2011; Sowa, 1992). According to Sowa (1992), there are many types of semantic

networks, depending on how they are used, but they all share the same goal:

supporting systems for automated reasoning. Out of the many types of semantic

networks, Sowa (1992) listed the six most common: definitional net, assertional net,

implicational net, executable net, learning net, and hybrid net.

A semantic network is simple to implement and understand, especially with

the help of graphical representation tools. Thus, such a network can be built

automatically and is easily translated to Prolog (Rashid, 2015). However, the

network makes no distinction between individuals and classes, and the links in the

graph only represent a binary relation with no standard definition of link name

(Sowa, 1992).
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Student Module

The student module represents a student’s knowledge status, learning style,

and other relevant information about the student, such as their emotional state (Xu

& Sarrafzadeh, 2004; Song et al., 1997; Rus et al., 2013).

In a programming ITS, the student module should represent the student’s

current knowledge of programming language concepts and point out any

misconceptions based on the student’s answers (Song et al., 1997). According to

(Kass, 1989), building a successful tutoring system depends heavily on correct user

modeling. The literature shows that many techniques are used to create student

modules. The most common are detailed below.

Overlay Model

The most commonly used technique for modeling student knowledge is the

Overlay model. This model was introduced by (Stansfield et al., 1976) based on the

assumption that the student has partial knowledge of the domain. The model is a

subset of the domain module with additional items, such as the degree of mastering

concepts. The name Overlay comes from imagining the student module as a paper

laid over the domain module, where any hole in the student module represents a

misconception where the student lacks knowledge (VanLehn, 1988).

C-Tutor (Song et al., 1997) is an example of a programming ITS that uses

the Overlay model, where the student module is a duplicated version of the domain

module with an extra slot called “studied.” This slot is marked when students finish

studying the materials to indicate they have learned the concept. ELM-ART uses a

more sophisticated multi-layer Overlay model that consists of Visited Status,

Learned Status, Inferred Status, and Known Status. Visited Status indicates

whether the student has visited the page, Learned Status shows whether the student

has successfully solved the unit’s tests and exercises, Inferred Status decides
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whether the unit can be marked as “known” from previously learned units, and

Known Status determines whether the unit has been noted as “known.”

The Overlay model is a simple, e�cient way of modeling student knowledge,

and as a result, many programming ITSs have used it (Brusilovsky, 1992; Cabada et

al., 2015; DeLooze, 1991; Song et al., 1997). However, this model is inadequate for

sophisticated modules because it does not consider how the student makes

inferences (Rivers, 1989) and does not integrate incorrect knowledge, student

preferences, and di↵erent cognitive needs (Chrysafiadi & Virvou, 2013).

Bayesian Network

Bayesian Network is a well-known framework that is used to reason about

uncertainty in student modules (Conati et al., 2002). A Bayesian network is a direct

acyclic graph where nodes represent variables of interest and arcs represent

dependency and relationships. Many programming ITSs in the literature have used

this network in their student module. For instance, BITS (Butz et al., 2006) uses a

Bayesian network to suggest learning goals and generate a suitable reading sequence

for each student. Other examples are (C. Lee & Baba, 2005) and CIMEL ITS

(Blank et al., 2005), where (C. Lee & Baba, 2005) is designed to teach students how

to use C++ STL, and CIMEL ITS tutors students on the “objects-first” approach.

A Bayesian network is frequently employed to reason about uncertainty

because of its high representative power, flexibility, and well-defined formalism

(Desmarais & Baker, 2012). However, it also contains a large number of hidden

nodes such as skills, concepts, and misconceptions (Desmarais & Baker, 2012) that

are never directly observed (Hastie et al., 2001).

Initialization of Student Module

The primary purpose of the student module is to adapt to each student’s

needs, and thus, when a student is new to the system, the student module uses an

initialization phase to assess the student’s knowledge. The most commonly used
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method to set up the student module involves giving the student an initial test. For

instance, (C. Lee & Baba, 2005; Weber & Brusilovsky, 2001) gave an initial test to

set up the student model. However, systems such as BIP (Barr et al., 1976) and

Haskell-Tutor (Xu & Sarrafzadeh, 2004) let students estimate their own knowledge

level. Furthermore, some ITSs, such as ELM-ART (Weber & Brusilovsky, 2001),

allow students to check the system estimation and modify it.

Interface Module

The interface module controls interactions and information exchange to

facilitate communication between the student and the other modules (Pillay, 2003;

Xu & Sarrafzadeh, 2004). The fundamental focus of this module is what

information to present and how to present it to the student (Pillay, 2003).

According to (Anderson & Skwarecki, 1986), the e↵ectiveness of an ITS depends

heavily on the design of the interface module. The literature on programming ITSs

shows many types of interaction, ranging from simple command-line interaction to

game-like interfaces. The main types of interaction are outlined below.

Menus and Buttons

Menus and buttons have been adopted by some programming ITSs, such as

BRIDGE (Bonar & Cunningham, 1988), OOPs (Gálvez et al., 2009), and J-LATTE

(Holland et al., 2009), where the learner practices and solves programming problems

using a menu with buttons. For instance, BRIDGE allows the student to construct

fully functional programs using a menu selection. The main advantage of this

approach is to increase the student’s focus by limiting the number of possible

actions, while limiting the possible solutions makes automated assessment easier.

Furthermore, this interface reduces the burden of learning programming language

syntax for novice programmers and allows them to concentrate more on

problem-solving (Gálvez et al., 2009). On the other hand, computer programming

can only be learned through practice, and the menu and buttons approach can
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prevent the student from learning syntax. That is, students do not have the chance

to make any syntax errors and learn from them. Thus, the menu and buttons

approach is more suitable for learning and practicing problem-solving and program

design.

Fill-in-the-Blanks

The fill-in-the-blanks approach uses a graphical interface that presents a

code with missing statements and asks the student to complete the code. Examples

of this type of system are JITS (Sykes & Franek, 2003) and J-LATTE (Holland et

al., 2009), which allow the student to fill in a missing code or statement. This

approach helps students by directing their attention to a specific location in the

code (Sykes & Franek, 2003), reducing the number of possible solutions, making

automated code assessment easier, and helping students develop a model for each

type of programming problem (Odekirk-Hash & Zachary, 2001). However, the

ultimate goal of learning programming is to produce e�cient and bug-free code, and

such an approach prevents the student from practicing constructing a fully

functional program from scratch. This approach is more suitable for tutoring

students on learning a specific concept, such as if conditions or loops, without

distracting the student with the rest of the code.

Natural Language Dialogue

Human tutors often have a conversation with the learner and elicit

self-explanations in addition to using other forms of communication and

coordination, such as gestures and graphical elements. Eliciting self-explanations

has been shown to lead to learning (Chi et al., 1994); therefore, the natural

language interface o↵ers an excellent option to interact with the learner and to

promote learning by eliciting self-explanations and simulating real student-teacher

interaction. Despite this advantage, the literature shows few programming ITSs,

such as Automatic Tutor (Danielson & Nievergelt, 1975), Duke Programming Tutor
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(Keim et al., 1997), ProPL (Lane & VanLehn, 2004), GENIUS (McCalla &

Murtagh, 1985), and Program Enhancement Adviser (PEA) (Moore & Moore,

1995), have used natural language dialogue as part of the interface.

One of the earliest natural language dialogue systems was Duke Programming

Tutor (DPT) (Keim et al., 1997). DPT is a multi-modal voice dialogue system that

guides students through a standard programming lab to help them construct simple

programs. The system uses a semantic network with a feature vector to model the

domain and uses a temperature function to steer the dialogue. DPT takes students’

input (i.e., a program) and uses simplistic minimum edit distance between their

code and the goal program. Therefore, DPT o↵ers task-oriented dialogue that leads

a student to achieve a set of goals in the process of writing a simple Pascal program.

Another example of a dialogue-based ITS is ProPL, which focuses on

programming design and problem-solving. ProPL uses coached program planning

(CPP) (Lane & VanLehn, 2003) as a style of tutoring to elicit problem

decomposition from students. Therefore, the tutor gives students a problem and

asks them to identify: (1) goal(s), which are declared by the main question of the

problem; (2) schema, the method to accomplish the goal(s); and (3) objects, i.e., the

data required by the program. The final product from the interaction is pseudocode

that can be translated into a program.

The goal of these systems is to help students understand and solve

programming tasks with an emphasis on the planning and designing phase of

computer programming.

On the other hand, systems such as GENIUS and PEA can be looked at as

helping tools. GENIUS interacts with students to help them fix syntax errors by

keeping them engaged in a dialogue in the hopes that they can resolve the errors.

The interaction is limited to yes/no questions and “I don’t know” responses. The

PEA system, on the other hand, helps students improve their coding style by
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providing advice on how to make the code more readable and maintainable. The

system can answer students’ questions about its change suggestions.

The main advantage of a natural language dialogue approach is that it

simulates real teacher-student interaction and o↵ers students the freedom to express

their ideas in a natural way. All ITSs in the literature that use this as their primary

interaction form focus on problem-solving, design, or debugging.

In contrast, the novel ITS proposed in this work, Socratic Tutor, engages

students in natural dialogue interaction similar to a human tutor. The main goal is

to test the student’s knowledge of programming concepts and clarify any

misconceptions. To this end, Socratic Tutor is clearly di↵erent from other ITSs in

computer programming.

Pedagogical Module

The pedagogical module contains knowledge about what and how to teach.

The module decides what the next instructional step will be based on the student’s

current knowledge as maintained in the student module, their answers, and the

instructional goals (Song et al., 1997). For example, the pedagogical model may

infer that the student does not understand a target concept and could thus decide

to provide more examples, hints, or a di↵erent teaching approach.

The most common pedagogical approach in programming ITSs is gradually

introducing programming concepts in a specific programming language (Cazzola &

Olivares, 2016; P. Lee & Phillips, 1998). An example of a programming ITS that

uses this strategy is ELM-ART (Weber & Brusilovsky, 2001), which builds a

learning path for every student based on the student’s current knowledge and the

relevance of the studied topics. Furthermore, ELM-ART o↵ers the student the

flexibility of choice by marking the learning units with colored bullets to show the

learning status of each unit. For example, a green bullet means the topic is ready to

be visited, whereas a red bullet means the student is not ready for that topic.
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Another example of such a system is ITEM/IP (Brusilovsky, 1992), which allows

the student to choose what to learn by selecting “What next” or “repeat” from the

main menu.

Adaptivity

One of the most critical features of any ITS is providing each student with

personalized tutoring (Butz et al., 2006) by adapting its instructional strategies

based on student characteristics as captured by the student module. To achieve this

goal, the system must utilize the student module and adapt according to the

student’s performance as inferred from their answers and actions. Adaptivity during

tutoring can be broadly divided into macro-adaptivity and micro-adaptivity.

Macro-adaptivity indicates the system’s ability to choose the most suitable task for

the student to work with (Rus et al., 2014). For instance, when a student does not

answer an exercise correctly, ELM-ART randomly selects another task with lower

di�culty, and in the case of a correct answer, the system chooses a task with greater

di�culty.

Another example proposed by Dadic et al. (2008) allows students to start

from the middle of a di�culty-sorted list of exercises. If the student fails to solve a

given problem, the system selects another problem from the middle of the easier

problem subset. If the student’s answer is correct, the system chooses a problem

from the middle of the harder problem subset. Haskell-Tutor (Xu & Sarrafzadeh,

2004) o↵ers macro-adaptivity by o↵ering the student three options: (1) following a

predefined sequence, (2) choosing from a sorted list of problems, or (3) letting the

system choose based on the student’s knowledge level.

On the other hand, micro-adaptivity indicates the system’s ability to adapt

its support features while the student is working on a specific task (Rus et al.,

2014). An example of a system using micro-adaptivity is BIP (Barr et al., 1976),

where each problem contains subtasks. The subtasks are isolated parts of the main
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problem that can be solved individually. Therefore, when students are struggling

with a problem, the system interferes to help by letting them solve the subtasks

until they can solve the complete problem. Another example is ER-Prolog-Tutor

(Tchetagni et al., 2005), where the tutor breaks down the main problem into

multiple sub-problems. Each sub-problem can be solved independently to achieve

the final solution. Table 4 shows a complete list of the ITSs and their adaptivity

level.

Feedback

The e↵ectiveness of an ITS depends heavily on the timing and type of

feedback given (Naser, 2008a). Timing in this context refers to when the ITS should

present feedback, while the type of feedback might include suggested reading

materials, vague or specific hints, error messages, and showing the correct answer,

as shown in Table 3.

Direct and immediate feedback, i.e., immediately after a misconception has

been detected, is generally acceptable to have the best impact. However, immediate

feedback can also be a distraction and cause the student not to pay attention

(Blank et al., 2005). Another issue with immediate feedback in programming is that

the tutor might not have enough context to explain why the code is wrong

(Anderson & Skwarecki, 1986).

The timing of feedback can be further classified into continued and

on-demand feedback. An example of continued feedback is MoleHill (1993), where

the feedback works in the background and labels each goal with a green or red color.

Green means the student achieved the goal, while red means the program is buggy

or incorrect. Another example proposed by (Gross & Pinkwart, 2015) uses four

indicator lamps: (1) the code contains a syntax error, (2) the code can be executed,

(3) the program terminates in a predefined time, and (4) the code produces a

correct result.
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Some other systems provide feedback only in a specific situation, such as

(Muansuwan et al., 2004) and Haskel-Tutor (Xu & Sarrafzadeh, 2004), where the

system only o↵ers feedback in the following situations: (1) if the student’s answer is

not correct, (2) if the student asks a question, or (3) if the student requests an

explanation. Table 3 shows each system and the type of feedback it provides.

Authoring of Content

The next step after creating a domain expert module is feeding it with

content. This process, called authoring of content, usually requires teachers or

experts to provide a problem statement and model solution.

Authoring content is a challenge in ITS development and requires expertise

in cognitive science and programming. Furthermore, constructing such content is

tedious, error-prone, and time intensive (Blessing, 1997; He↵ernan et al., 2006). For

instance, (Murray, 2003; V. Aleven et al., 2009) estimated that 100 development

hours resulted in only 1 hour of tutoring.

Therefore, many authoring systems have been developed in di↵erent domains,

such as physics, mathematics, and public policy, to increase the accessibility and

a↵ordability of authoring ITSs (He↵ernan et al., 2006). For instance, an authoring

system developed by Jordan et al. (2001) reduced development time to three

months. The system used a graphical interface for teachers to construct tutoring

dialogue for physics. As another example, Aleven et al. (2009) developed a

graphical user interface to speed up the development of instructional components,

such as hints and just-in-time messages. However, these systems still require

teachers or experts to use a graphical interface to create the content themselves.

In the domain of programming ITSs, there are some exceptions to this

tendency, such as JITS (Sykes & Franek, 2003) and C-Tutor (Song et al., 1997).

JITS only requires the teacher to provide a problem statement and desired output,
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while C-Tutor only requires a sample program. C-Tutor uses a goal extraction

system (Hahn & Kim, 1997) to extract a problem description automatically.

Domain Coverage

As noted earlier, the programming process consists of multiple phases,

including planning, designing, implementing, testing, and debugging code. Novice

programmers struggle at every step, and their performance worsens when trying to

do multiple steps at once (Du Boulay, 1986). On top of that, programming courses

cover a wide range of skills and concepts, so many programming ITSs focus on only

one of these phases.

The planning and design phase plays a significant role in solving

programming problems. However, novice programmers often underestimate the

importance of this phase or jump straight to implementation (Pintrich et al., 1987;

Lane & VanLehn, 2004). As a result, many tutoring systems have attempted to

address this shortcoming. For instance, Pseudocode Tutor (Lane & VanLehn, 2003)

focuses on the problem-solving stage, where a student can use natural language to

interact with the tutor. The result of the tutoring session is a set of pseudocode

blocks that the student can rearrange.

Some programming ITSs focus on the implementation phase and try to teach

syntax and programming concepts in a specific programming language. For

example, Meno-ii (E. M. Soloway et al., 1981) and RAPTIS (Woods & Warren,

1995) teach the loop concept in Pascal.

Program testing and debugging is the final phase where the students judge

their program. However, about 85% of novice programmers’ code contains bugs,

which they often have di�culty fixing even when the model answer is presented

(Hattori & Ishii, 1999). Therefore, systems such as PROUST (Johnson & Soloway,

1985) try to help students find semantic and logical bugs. Table 3 shows a complete

list of the domain coverage for each system.
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Programming ITS E↵ectiveness

The literature contains many successful examples of ITSs that increase the

quality of programming education (Pillay, 2003) in terms of student knowledge. For

instance, Anderson et al. (1986) showed that students who used Lisp Tutor scored

one letter grade higher on their final exam. In addition, (Lane & VanLehn, 2003)

found that students who used Pseudocode Tutor committed fewer mistakes and

provided more comments in their programs. Another example is ITEM/IP

(Brusilovsky, 1992), which reduced learning time from 4-5 weeks to 2-3 weeks and

increased student interest in learning programming.

Programming ITS performance has been reported in terms of assessment

capabilities, a critical aspect of any fully automated ITS. For instance, C-Tutor was

evaluated on 240 programs containing 532 bugs. The system was able to run 93% of

the programs and identify 81% of the total bugs. Similarly, ITEM/IP was able to

detect 80% of bugs in student programs.

Self-Explanation

Self-explanation is when students explain the target material to themselves

while learning, which can make them better learners, i.e., learn more deeply and

show higher learning gains. Self-explanation’s e↵ectiveness is attributed to its

constructive nature, as it activates several cognitive processes, such as generating

inferences to fill in missing information and integrating new information with prior

knowledge; it also benefits from its meaningfulness to the learner; i.e.,

self-explanation is self-directed and self-generated, making learning more personally

meaningful than when explaining the target content to others (Roy & Chi, 2005).

The positive e↵ects of self-explanation on learning have been demonstrated in

di↵erent science domains, such as biology (Chi et al., 1994), physics (Conati &

Vanlehn, 2000), math (V. A. Aleven & Koedinger, 2002), and programming

(Bielaczyc et al., 1995).
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A series of studies (Bielaczyc et al., 1995; Pirolli & Recker, 1994; Recker &

Pirolli, 1990) found that self-explanation helped learning Lisp programming

concepts, and skill improvement had a strong correlation with the amount of

self-explanation generated. Two other studies with undergraduate students (Rezel,

2003) and high school students (Alhassan, 2017) found that students who used a

self-explanation strategy while studying were more successful at a program

construction task (Visual Basic) compared to those who did not apply the strategy.

The e↵ectiveness of self-explanation in programming has also been studied in

relation to SQL (Yuasa, 1994), JavaScript (Kwon & Jonassen, 2011), HTML (Kwon

et al., 2011), and assembly language (Hung, 2012). (Bielaczyc et al., 1995) showed

that university students who underwent explicit training on self-explanation and

self-regulation strategies outperformed students in a control group in

problem-solving performance.

Code Comprehension

Code comprehension, i.e., understanding computer programs, is a critical

skill for learners and professionals. Indeed, students learning computer

programming spend a significant portion of their time reading or reviewing someone

else’s code (e.g., source code examples from a textbook or provided by the

instructor). Furthermore, it has been estimated that software professionals spend at

least half of their time analyzing software artifacts in an attempt to comprehend

computer source code (O’brien, 2003). Reading code is the most time-consuming

activity during software maintenance, consuming 70% of the total lifecycle cost of a

software product (Rugaber, 2000; Basili & Boehm, 2001; Buse & Weimer, 2008).

(O’brien, 2003) noted that source code comprehension is required when a

programmer maintains, reuses, migrates, reengineers, or enhances software systems.

Therefore, o↵ering support to enhance learners’ source code comprehension skills

will have lasting positive e↵ects on their academic success and future careers.
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According to (Schulte et al., 2010), “Comprehension is usually

conceptualized as a process in which an individual constructs his or her own mental

representation of the program.” Mental (or situation) models are a key component

of source code comprehension theories (Shneiderman & Mayer, 1979; Brooks, 1983;

Pennington, 1987b; Shaft, 1992; Good, 1999; Burkhardt et al., 2002). It is well

accepted that there is a modality-independent higher-level skill of comprehension

that involves constructing situation models (Zwaan & Radvansky, 1998). This

assertion is based on research showing that participants arrive at similar (although

not identical) understandings when presented with textual, visual, and audio

descriptions of a situation.

It is also well documented that novice programmers struggle with

constructing accurate mental models during key learning activities, such as source

code comprehension (E. Soloway & Ehrlich, 1984; Pennington, 1987b; Ramalingam

et al., 2004; Margulieux et al., 2012).

This challenge is not surprising given that constructing mental

representations is a higher-level comprehension skill, typically engendering a high

cognitive load (Kintsch & Walter Kintsch, 1998; Zwaan & Radvansky, 1998; Snow,

2002; Graesser et al., 2011).

According to code comprehension theories, code comprehension involves four

major components: (1) an external representation, external views or aids assisting

the programmer in comprehending the code; (2) a knowledge base, the

programmers’ knowledge; (3) a situation/mental model, i.e., the programmer’s

current understanding of the code, which is constantly updated through the

assimilation process; and (4) an assimilation process through which the situation

model is updated based on the knowledge base, external representation, and current

situation model (Shneiderman & Mayer, 1979; Brooks, 1983; Letovsky & Soloway,

1986; Pennington, 1987b; Spohrer & Soloway, 1989; Shaft, 1992; Von Mayrhauser &
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Vans, 1995; Good, 1999; Burkhardt et al., 2002; Robins et al., 2003; Schulte, 2008;

Schulte et al., 2010). A major problem with traditional programming

comprehension models is that they were the result of analyzing expert programmers’

comprehension processes as opposed to those of novices, i.e., individuals with no or

almost no relevant knowledge. More recently, some researchers have sought to

address this issue, such as Schulte et al. (Schulte et al., 2010), who proposed an

education comprehension model.

As opposed to professional programmers, for the majority of learners in

introductory programming courses, their knowledge base is modest or even

non-existent. For such novices, support from external representations, such as the

source code itself; related documents, such as textbooks or materials provided by

the instructor; and advice from more knowledgeable classmates/peers, experts, or

intelligent tutors plays a vital role in mediating the construction of mental models.

In the absence of adequate support, students in introductory programming courses

struggle, with a negative impact on their self-e�cacy, learning, and retention. Many

feel overwhelmed and enter a state of “shock” from which they never recover

(Du Boulay, 1986; E. Soloway & Spohrer, 2013), resulting in quitting the field, as

indicated by high attrition rates. Instructors, peers, and experts are not available to

help most of the time. However, ITSs can be available 24/7/365 and can be accessed

from anywhere using any device with an Internet connection and a browser.

Given the importance of code comprehension among programming students

and the fact that they struggle to build accurate mental models during learning

activities, there is an enormous need for individualized support in the form of an

ITS. The work described here contributes to this goal of developing ITSs to model

and sca↵old learners’ code comprehension processes and skills in introductory

programming courses. Therefore, it should improve their learning and increase

retention and graduation rates in computer science programs. In particular, this
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work focuses on developing a Socratic ITS and automating the authoring process for

code comprehension.

Socratic Method of Teaching

The Greek philosopher Socrates used a series of questions to guide students

in their process of examining a topic or concept. Socrates believed guided dialogues

would help his students better understand a given topic, identify incomplete

understanding of key concepts, clarify misunderstandings, and correct

misconceptions, resulting in a deeper understanding. Graesser et al. (1995) argued

that the remedial aspect of tutor interaction, in which tutor and learner

collaboratively improve an initial answer to a problem, is the primary advantage of

tutoring over classroom instruction. Chi et al. (2004) advanced a related

hypothesis: tutoring enhances students’ capacity to reflect iteratively and actively

on domain knowledge.

The main characteristic of the Socratic method is to observe and guide

without providing answers by presenting questions and lets the student reconsider

his or her thinking. The Socratic method consists of five stages wonder (posing

question), hypothesis (an answer to the wonder), elenchus or refutation

(counterexample), accept/reject and finally act accordingly (Boghossian, 2012).

The Socratic method can be categories as classic and modern version (Delić

& Bećirović, 2016). The classic method refers to the early version of Socratic

dialogues where the tutor claims not to know the most fundamental principles such

as justice. The goal is to get a short answer and achieve an understanding of basic

principles. On the other hand, the modern method does not rely entirely on

student’s answers. Alternatively, it guides the students step by step by a set of set

of pre-designed questions to lead the students to a specific idea. The aim of the

modern method goes deeper than naming or identifying essential topics by helping

students develop specific knowledge about those topics
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The Socratic method has been used as a teaching tool in many disciplines

such as legal education (Sheppard, 2007), mathematics (K.-E. Chang et al., 2003),

Physics (Warnakulasooriya et al., 2006). Jackson (2006) stated that the Socratic

method has been the dominant teaching tool since the dawn of modern law school.

In mathematics, teachers use the Socratic method to teach topics such as

subtraction (K.-E. Chang et al., 1998) and geometry (Goldin et al., 2017).

The Socratic method can be an excellent tool for teaching or a weapon that

causes perplexity, humiliation and shame (Boghossian, 2012; Delić & Bećirović,

2016). For instance, professor Kingsfield calling a student who does a bad job

answering a question down to the podium, giving him a dime, and stating, “Go call

your mother, and tell her you’ll never be a lawyer” (Jackson, 2006). To disapprove

these claims, Delić and Bećirović (2016) stated that the cause of humiliation, shame

and all other negative feelings are due to the lack of knowledge of the Socratic

method.

One-on-one instruction has the advantage of engaging most students’

attention and interest more than other forms of instruction, such as lecturing or

monologues in which the student might not choose to pay attention (VanLehn et al.,

2007). Therefore, the Socratic method relies on a so-called direct line of reasoning

(K.-E. Chang et al., 2003) that emphasizes directing students’ attention to key parts

of a learning task, triggering reasoning and explanation processes from students,

which have been shown to be extremely beneficial in deep understanding tasks.

ITSs with conversational dialogue represent a special category of educational

technologies. These conversational ITSs are founded on explanation-based

constructivist theories of learning and the collaborative constructive activities that

occur during human tutoring. They have been shown to promote student learning

gains up to an impressive e↵ect of 1.64 sigma when compared to students learning

the same content in canned text remediation (VanLehn et al., 2007). (Brown &
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Kane, 1988; Pressley et al., 1992) reported that students learned more e↵ectively

when given the ability to explore and explain their own knowledge. Therefore,

Socratic tutoring has been employed by human as well as computer tutors as early

as 1977 in Stevens and Collins’ WHY system. AutoTutor (Graesser et al., 2004) is

another example of such a system. A type of conversational ITS implements a

Socratic tutoring style that relies on prompting students to think and provide

information in the form of answers to questions. The questions are designed to

follow a directed, predefined line of reasoning (Rosé et al., 2001).

Discussion and Conclusion

There is a large and growing need for advanced, personalized technology,

such as ITSs, for programming education. The ITS holds the promise of providing

personalized education to every learner 24/7. This chapter summarized the research

on ITSs for programming. While successes in limited contexts have been produced,

there are still many challenges left in terms of developing and deploying ITSs at

scale across many types of learners and topics. The current work contributes to this

area of research by developing a dialogue-based ITS for programming and an

auto-authoring tool.
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Chapter 3

Socratic Intelligent Tutoring System

Socratic Tutor is an online dialogue-based intelligent tutoring system (ITS)

that helps novices develop a deeper understanding of programming concepts. The

main type of instructional task is source code comprehension, where the system

shows a Java code example and asks the student to self-explain the code and predict

its output. After that, the system guides the student by asking a sequence of

questions to elicit self-explanations while the student is reading and trying to

understand the major programming concepts presented in the code. This system

uses the Socratic method of teaching to provide sca↵olding using a three-level

feedback loop. On the first level, the system briefly explains the programming

concept and asks the student to answer the original question. If the student fails,

the system provides help in the form of a fill-in-the-blank question on the second

level. This type of question limits the student’s answers and draws more attention

to the key part of the solution. If the first and second levels fail to elicit a correct

response, third-level sca↵olding is given in the form of a multiple-choice question.

Finally, if the student cannot give the correct answer, the system presents the

solution and moves on to the next question.

Architecture

The architecture of Socratic Tutor consists of a student module, a domain

module, a pedagogical module, an interface module, and a natural language

understanding (NLU) engine (Banjade et al., 2015), as shown in Figure 2. The NLU

engine is used to automatically evaluate students’ answers, making it possible to

tailor the teaching strategy to each learner. For instance, if a learner provides a

correct answer, the system presents positive feedback, such as “great job” or

“excellent answer.” In the case of an incomplete or incorrect answer, the system

provides sca↵olding in the form of Socratic questions.
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Figure 2. General architecture of Socratic Tutor

Student Module

The student module stores the student’s information and level of mastery of

programming concepts. The module uses an ER database to store and retrieve this

information as well as two sets: to-be-learned and completed. When a student logs

on for the first time, the module generates a new record and a copy of the

to-be-learned set from the domain module. Each time the student completes a task,

the concept is moved from the to-be-learned set to the completed set.

Domain Module

The domain module consists of a list of topics in a predefined order, where

each programming concept is associated with certain tasks. The tasks are written by

experts in XML format, and each task includes Java code, questions, model answers,

misconceptions, and feedback. Figure 3 shows a snapshot of a domain task.

Pedagogical Module

The pedagogical module is defined by rules in XML format that inform the

tutor about the next step at each point in the dialogue. Therefore, based on a

student’s answers and the results from the NLU engine, the module decides to (1)

start Socratic sca↵olding questions, (2) move to the next question, or (3) move to
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Figure 3. Snapshot of a domain task

the next task. The rules can be easily customized for each tutoring session. Figure 4

shows a snapshot of the pedagogical module rules.

Interface

The interface of Socratic Tutor consists of three main areas, as shown in

Figure 5:

1. The code area, where the source code example is shown.

2. The dialogue area, where the dialogue history is shown.

3. The student response area, where students type their input, could show

greetings, answers, or questions.

Preliminary Assessment of Socratic Tutor

An experiment was conducted to evaluate the e↵ectiveness of Socratic Tutor

and understand its impact on students’ programming knowledge as well as the

relationship between their learning gains and self-e�cacy and the tutor’s sca↵olding

questions. The experiment was conducted to answer the following research

questions: (1) How much do students improve their learning of basic programming

concepts when using Socratic Tutor? (2) How much can Socratic Tutor help
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Figure 4. Snapshot of pedagogical rules

students with low prior programming knowledge improve their mastery of basic

programming concepts? (3) What is the relationship between Socratic Tutor’s

sca↵olding questions and learning gains? (4) How does the type of sca↵olding

questions a↵ect students’ learning processes? and (5) How does self-e�cacy a↵ect

students’ learning gains? The scope of the experiment was limited to simple

input-output operations, using math and string classes, if and if-else conditions,

while loop, for loop, array, function overload, recursion function, and finally class.

Method

Participants consisted of 34 undergraduate students enrolled in an

introductory computer science course. The participants interacted with Socratic

Tutor where the tutor asked them to explain the code while trying to understand it

and to predict the output. After that, it asked students to self-explain the

programming statements used in the code. If a participant’s answer was incorrect or

incomplete, the system initiated the three-level Socratic sca↵olding questions.
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Figure 5. Socratic Tutor interface

Materials

The materials for this experiment consisted of a background questionnaire, a

self-e�cacy survey (see Table 9), and a pre/post-test. The background

questionnaire contained 16 questions measuring student programming knowledge on

a 5-point Likert scale, where 5 was “strongly agree” and 1 was “Strongly disagree.”

The self-e�cacy survey contained 11 questions on a 5-point Likert scale, with each

question related to a programming concept that participants would encounter

during the tutoring session or general programming skills. The pre-test and

post-test had a similar level of di�culty and contained nine Java programs, where

participants had to predict the output of each program.

Procedure

The experiment was conducted in a computer lab under the supervision of

experimenters. First, participants were briefed about the purpose of the experiment
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Table 5: Pre- and post-test means, SD, improvement, and learning gain

Pre-test Pos-test
Section N M SD M SD Potential Improvement Learning gain
High 17 83.99 7.58 91.83 7.89 16.01 7.84 48%
Low 17 67.65 8.84 84.97 10.35 32.35 17.32 53%
All 34 75.82 11.6 88.4 9.71 24.18 12.58 52%

* Final scores out of 100%

and asked to read and sign a consent form. Those who consented took a background

questionnaire, a self-e�cacy survey, and a pre-test. After these initial assessments,

they underwent an hour-long tutoring session using Socratic Tutor while working on

nine Java code examples. Finally, they took a post-test with a format and di�culty

level similar to the pre-test.

Assessment

Each question in the pre- and post-tests were scored with a 1 when the

answer provided by the student was correct and 0 otherwise. Based on this rubric

and student responses, a learning gain (LG) score was completed as follows (Marx &

Cummings, 2007).

LG =

8
>>>>>>><

>>>>>>>:

post-test�pre-test
100�pre-test post-test > pre-test

post-test�pre-test
pre-test post-test < pre-test

drop pre-test = post-test = 100 or 0

0 post-test = pretest

(3.1)

Results

Learning Gains

To measure Socratic Tutor’s overall e↵ectiveness, the di↵erence between pre-

and post-test scores is displayed in Table 5. The di↵erence in this case is a

dependent variable that represents the change in learning or knowledge due to the

tutoring session. It is calculated by subtracting the number of correct answers in the
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pre-test from the number of correct answers in the post-test. There are two possible

outcomes for the di↵erence: (1) a positive value representing an increase in student

knowledge or (2) a zero or negative value representing no improvement or a decline.

Learning gain is another method to represent changes in student knowledge.

It is calculated as shown in equation 3.1, where a positive value represents a gain,

and zero or a negative value represents no change or a decline.

The results showed an overall pre-test mean of 75.82 and post-test mean of

88.4, for a mean di↵erence of 9.71 points (p < 0.01) and a learning gain of 52.03%.

Therefore, the overall increase in student knowledge was promising, validating the

e↵ectiveness of Socratic Tutor.

We further analyzed the results to answer the research question How much

can Socratic Tutor help students with low prior programming knowledge improve

their mastery of basic programming concepts? For this purpose, participants were

divided into two groups, high and low prior programming knowledge, based on

average pre-test scores.

The high knowledge group had a mean pre-test score of 83.99 and post-test

mean of 91.83, resulting in a post-test vs. pre-test di↵erence of 7.84 points and a

learning gain of 48.97%. On the other hand, the low knowledge group had an

average pre-test score of 67.65 and average post-test score of 84.97, resulting in a

17.32-point di↵erence between tests and a 53% learning gain. Therefore, students

with lower pre-test scores outperformed the high knowledge group by 9.94 points in

terms of pre-/post-test di↵erences and 4.57% in terms of learning gains.

The results from a two-tailed test showed a statistically significant di↵erence

between the two groups regarding pre- and post-test di↵erences and learning gains

(p < 0.01).
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Table 6: Socratic sca↵olding questions per session grouped by average pre-test scores

Socratic sca↵olding questions
Section N Mean Median SD
High 17 8.82 6.00 6.96
Low 17 12.88 12.00 7.36
All 34 10.85 10.50 7.34

Socratic Sca↵olding Questions

One of Socratic Tutor’s main features is its ability to provide tailored

support to students and correct misconceptions. It uses positive, neutral, and

negative feedback messages and Socratic sca↵olding questions that vary in the

degree of information provided, as shown in Table 8. On average, the system

provides 10 sca↵olding questions per tutoring session.

To explore the Socratic sca↵olding questions’ e↵ectiveness, students were

divided into two groups based on their average pre-test scores. Table 6 shows that,

on average, students received 10.85 sca↵olding questions during a tutoring session.

However, this number increased by 15.8% for students in the low programming

knowledge group and dropped by 18.8% for those in the high programming

knowledge group. These results are cross-referenced with Table 16 to better

understand the e↵ects of Socratic sca↵olding questions on learning gain scores. The

results suggested that more help led to higher knowledge gains, with (p < 0.01).

To further understand the relationship between support received and each

programming concept, the instances of support for each programming concept were

grouped and analyzed, as shown in Table 7. This analysis revealed the degree of

di�culty of each programming concept by using help received as an indicator.

Students struggled most with the function related concepts, receiving help an

average of 2.53 times for function overload and 2.06 times for recursivefunction.

On the other hand, the if � else condition, Math and String class, while loop, and

array showed the lowest rates of help received. For these concepts, students

41



received support less than once on average, meaning they often got the correct

answer without any help. Finally, the loops and class concepts were in the middle,

with feedback given 1.6 times on average.

Table 7: Socratic sca↵olding questions per programming concept

Concept Total Mean Median SD
If-else condition 33.00 0.97 1.00 1.06
Math & String class 17.00 0.50 0.00 0.71
While loop 21.00 0.62 0.00 0.85
For loop 54.00 1.62 1.00 2.24
Array 31.00 0.91 0.00 1.56
Function overload 85.00 2.53 2.00 2.09
Recursion function 70.00 2.06 1.00 2.00
Class 56.00 1.65 1.00 2.01

Analyzing the e↵ectiveness of various sca↵olding questions revealed that the

most useful question type was fill-in-the-blank questions with a success rate of

about 76%. Multiple-choice questions were the second most helpful type with a

success rate of about 69%. The least helpful were concept explanation questions

with a success rate of about 62%. Furthermore, Socratic Tutor provides three levels

of sca↵olding, as shown in Table 8. On average, students were able to provide the

correct answer 62% of the time after receiving the first level of help. This success

rate increased by 14% in Level 2 but fell by 7% in the third level.

Table 8: E↵ectiveness of Socratic sca↵olding questions grouped by type

Level Type Succeeded Failed
1 Concept explanation 62.02% 37.98%
2 Fill-in-the-blank 76.47% 32.53%
3 Multiple-choice 69.05% 30.95%

Self-E�cacy

To understand the relationship between self-e�cacy and learning gains,

participants were divided into two groups based on average self-e�cacy scores, as

shown in Table 10. Students with higher self-e�cacy scores showed on average
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Table 9: Self-e�cacy means and SD

Question Mean SD
I believe I will receive an excellent grade in the Java programming
class.

4.27 1.85

I will certainly master the skills taught in the Java programming
class.

3.69 1.76

I can write syntactically correct Java statements. 4.04 1.68
I can understand the language structure of Java and the usage of
the reserved words.

4.04 1.87

I can write logically correct blocks of code using Java. 3.85 1.78
I can write a small Java program given a small problem that is
familiar to me.

4.50 1.63

I can write Java programs if given a well-specified set of require-
ments.

4.31 1.67

I can understand how to declare and use variables in Java such as
int, double, String, etc.

4.88 1.58

I can understand a conditional expression in Java such as if ... else
...

4.96 1.59

I can declare and use functions in Java. 4.38 1.77
I can declare and use recursive functions in Java. 4.31 1.74
I can understand a loop in Java, such as for and while loops. 4.77 1.58
I can mentally trace well-defined iterative statements in Java, like
for and while loops.

4.35 1.77

I can understand the object-oriented paradigm. 4.31 2.05
I can understand and make use of a Java class that is already de-
fined, given a clearly labeled declaration of the class.

4.15 1.93

I can identify the objects in the problem domain and can declare,
define, and use them.

4.15 1.89
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Table 10: Self-e�cacy and leaning gain means and SD

Self-e�cacy Learning gain
Section N M SD M SD
High 13 80.77 11.72 53.85 44.83
Low 21 42.38 11.08 51.01 23.52

2.84% higher learning gains than those with low self-e�cacy. However, a two-tailed

test found no statistically significant di↵erence between the two groups ( p > 0.01 ).

Conclusion

Promoting a deeper understanding of programming concepts is the primary

focus of Socrates Tutor, a dialogue-based ITS that uses NLP techniques to guide

dialogue. Socratic Tutor simulates a more realistic student-tutor setting by using

natural language, allowing the system to ask any type of question a human tutor

might ask and to evaluate natural language answers. Additionally, the system is

language independent and can be used to tutor any programming language. Many

dialogue-based ITSs have been developed for computer programming, such as DPT,

ProPL, GENIUS, and PEA. However, Socrates Tutor is a novel dialogue-based ITS

that uses the Socratic method of teaching to tutor students on computer

programming.

The system was evaluated by conducting an experiment on 34 urban

university students taking an introduction to computer programming course. The

results showed that learning gains increased by 52% or 12.58 points from the

pre-test to the post-test. Students with lower knowledge at the beginning benefited

more from using the system, with a 4.57% increase in learning gains or 9.49 points

on the post-test. In addition, students with less knowledge at the beginning received

help four more Socratic sca↵olding questions on average.

The findings indicated that type of support had a definite e↵ect on novice

programmers. Socrates Tutor provides three levels of sca↵olding, as shown in Table

8. On average, students were able to provide the correct answer after the first level
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62% of the time. This rate increased to 67% in the second level but dropped in the

third level by 7%. The most e↵ective type of sca↵olding questions were

fill-in-the-blank, with a success rate of 76%. Multiple-choice was the second most

helpful, with a success rate of 69%. The least helpful was concept explanation, with

a success rate of 62%.
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Chapter 4

Socratic Method vs. Traditional Output Method for Source Code

Comprehension

To understand the impact of the Socratic method on students’ programming

knowledge and other characteristics, such as confidence, an experiment was

conducted to answer the following research questions: (1) How much do students

improve their learning of basic programming concepts when using Socratic Tutor?

(2) How much can Socratic Tutor help students with low prior programming

knowledge improve their mastery of basic programming concepts? (3) How much do

students learn about each targeted programming concept when using Socratic

Tutor? (4) What is the relationship between the self-explanation volume of Java

code and learning gains? (5) How much do students explain the behavior of Java

code? (6) What is the relationship between the self-explanation volume of Java code

and quality? (7) How much does Socratic Tutor a↵ect students’ self-confidence?

and (8) What is the relationship between Socratic Tutor’s sca↵olding questions and

learning gains?

This chapter presents a comparative study regarding the traditional output

method of learning Java programming and the Socratic method. The participants

were university students, and the scope was limited to arithmetic operations, nested

if � else, while loops, for loops, arrays, and class concepts.

Method

Participants consisted of 70 undergraduate students enrolled in an

introductory computer science course at a major 4-year Asian university. Half of the

students were randomly assigned to a control group, which used a scaled-down

version of the Socratic Tutor ITS that only presented Java code examples and asked

participants to predict the output without providing any feedback or Socratic

tutoring. The other half of the participants were assigned to a treatment group that
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used the full version of Socratic Tutor. Socratic Tutor asked them to self-explain the

code while trying to understand it and to predict the output. After that, it asked

the students to self-explain the programming statements used in the code. If a

participant’s answer was incorrect or incomplete, the system initiated the three-level

Socratic sca↵olding.

Materials

Materials for this experiment included a self-confidence survey taken before

and after the experiment and a pre-test and post-test measuring participants’

knowledge about key programming concepts. The self-confidence survey contained

six questions, each related to one programming concept students would encounter

during the tutoring session. For each question, participants needed to select a

confidence level about the concept on a 7-point Likert scale, where 7 was “highly

confident” and 1 was “not confident at all.” The pre-test and post-test had similar

levels of di�culty and contained six Java programs linked to the six survey

questions. For each program in the pre-test and post-test, participants were asked

to predict the output of the code.

Procedure

The experiment was conducted in a computer lab under supervision. First,

participants were informed about the purpose of the experiment and given a consent

form. Those who consented took a self-confidence survey and the pre-test. Once

they finished the pre-test, they participated in an hour-long tutoring session.

Finally, they took the post-test and another self-confidence survey.

Assessment

The test questions were scored 1 if the answer was correct and 0 otherwise.

The learning gain score (LG) was calculated for each participant as follows (Marx &

Cummings, 2007):
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Table 11: Pre- and post-test means, SD, potential, improvement, and learning gain

Pre-test Post-test
Section N Mean SD Mean SD Potential Improvement LG
Control group 29 57.67 35 61.33 33.3 42.3 3.66 8%
Treatment group32 57.83 30 80 21.67 42.17 22.17 52%
* Final scores out of 100%

LG =

8
>>>>>>><

>>>>>>>:

post-test�pre-test
100�pre-test post-test > pre-test

post-test�pre-test
pre-test post-test < pre-test

drop pre-test = post-test = 100 or 0

0 post-test = pre-test

(4.1)

Their confidence level was computed as indicated below:

ConfidenceLevel = post-Confident� pre-Confident (4.2)

Improvement was calculated as follows:

Improvement = Post-test� Pre-test (4.3)

Results

Out of 70 participants, three were excluded from the treatment group and

two from the control group because they had a perfect score on both the pre-test

and post-test. Another four were excluded from the control group because they did

not complete the experiment, resulting in an adjusted total of 61.

Learning Gains

To answer the questions “How much do students improve their learning of

basic programming concepts when using Socratic Tutor?” and “How much can

Socratic Tutor help students with low prior programming knowledge improve their

mastery of basic programming concepts?”, the results from both groups were
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Table 12: Pre- and post-test means, SD, potential, improvement, and learning gains
(high vs. low)

Pre-test Post-test
Section N Mean SD Mean SD Potential Improvement LG
Control group

High 14 86.67 6.67 88.3 11.67 13.33 1.63 12%
Low 15 26.76 21.67 38.3 28.33 73.24 11.54 15%
Treatment group

High 15 71 5 78 6.67 29 7 24%
Low 17 43 21.67 70 21.67 57 27 47%
* Final scores out of 100%

analyzed in terms of average pre-test, post-test, pre-post improvement, and learning

gains, as shown in Table 11. The treatment group showed learning gains 45% (18.5

points) higher on the post-test than the control group. A two-tailed t-test revealed

a statistically significant di↵erence between groups regarding their improvement

(t=2.8, df=54, p<0.05) and learning gains (t=3.6, df=51, p<0.05).

Participants were divided into high and low groups based on their average

pre-test scores to look for an impact from low or high prior programming

knowledge, as shown in Table 12. Those with low prior knowledge of the targeted

programming concepts in the control group showed a 11% post-test improvement,

although the di↵erence between pre- and post-test was not significant (p>0.01).

On the other hand, participants with lower prior programming knowledge in the

treatment group showed a significant 27% increase in post-test improvement (t=3.6,

df=21, p<0.05). Comparing the low knowledge participants from the control and

treatment groups, an independent-samples t-test showed a significant di↵erence in

post-test improvement (t=2, df=24, p<0.05) and learning gains (t=2.4, df=19,

p<0.05). Further analysis showed a statistically significant di↵erence between low

and high prior programming knowledge participants in the treatment group (t=2.3,

df=21, p<0.05).

To address the question “How much do students learn about each targeted
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Figure 6. Improvement in students’ knowledge per programming concept

Table 13: Means and SD of words, sentences, and content-word per tutoring session

Word count Sentence count Content-word count
Section N Mean SD Mean SD Mean SD
All 32 384 46.24 65.2 34.20 168.2 24.36
Grouped by average learning gains

High 15 410.71 52 69.7 24.18 180.76 28.23
Low 17 353.65 61.3 63.5 32.12 155.24 19.19

programming concept when using Socratic Tutor?”, their test improvement was

analyzed and is shown in Figure 6. The improvement in the treatment group was

higher with a minimum of 10% and maximum of 33%. To further understand these

figures, an independent-samples t-test between groups revealed a significant

di↵erence in nested if-else (t=-2.04, df=56, p<0.5) and loop (t=-1.97, df=54,

p<0.5) concepts.

Analysis of Students’ Natural Language Responses

According to self-explanation theories of learning, encouraging students to

explain target concepts, core programming concepts in this case, should have a
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Table 14: Mean of Self-explanation volume and quality factors per task

Section Volume Inferences Control flow Data flow Program model
High 13 49.4 2.80 3.80 3.60 4
Low 19 12.93 0.5 0.5 0.33 1

positive impact on their learning. Using the Socratic method, which involves asking

students questions and encouraging them to self-explain concepts, was expected to

have a similar e↵ect. The researcher quantified students’ responses to answer the

questions “What is the relationship between the self-explanation volume of Java

code and learning gains?” and “How much do students explain the behavior of Java

code?” The results of this analysis are shown in Table 13 in terms of word,

sentence, and content-word count. The content words were nouns, verbs, adjectives,

and adverbs. On average, responses contained 384 words, 65.2 sentences, and 168.2

content words per tutoring session. To further understand how students’ knowledge

a↵ected their interaction with Socratic Tutor, they were divided into two more

groups (high and low) based on their average learning gains. The high programming

knowledge group’s responses contained more words, sentences, and content words.

On average, there was a di↵erence of 57.06 words, 6.2 sentences, and 25.52 content

words, but a two-tailed t-test found no significant di↵erence between the high and

low groups (p>0.01).

To answer the question “What is the relationship between the

self-explanation volume of Java code and quality?”, self-explanation responses were

divided into two groups (high and low) based on average length and were analyzed

using inferences, control flow, data flow, and program model in keeping with

self-explanation and code comprehension theories (Pennington, 1987a; Schulte et al.,

2010). For each factor in each task, self-explanations were measured on a 5-point

Likert scale (0 = Very Poor, 1 = Below Average, 2 = Average, 3 = Above Average,
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Table 15: pre- and post-confidence scores and average improvement

Pre-confidence Post-confidence Improvement
Section N Mean SD Mean SD Mean SD
Control group 29 4.5 2.3 4.4 2 -0.1 2.2
Treatment group 32 4.3 1.6 5.1 1.5 0.8 1.3

4 = Excellent). After that, the final score was measured by averaging the total

scores from all tasks, as shown in Table 14.

Descriptive statistics were calculated and an independent-samples t-test was

run to compare the mean score for each factor between high and low volume to

understand the relationship between the volume and quality of self-explanations.

The results showed a significant di↵erence in self-explanation quality between high

and low volume responses (p<0.01). An independent-samples t-test for each factor

showed a significant di↵erence between the low and high groups (p<0.01). These

results suggested that the volume of explanation had an impact on the quality of

self-explanation.

Self-Confidence

To address the question “How much does Socratic Tutor a↵ect students’

self-confidence?”, students’ level of self-confidence was compared before and after

the treatment. The confidence level of the treatment group improved by 15% on

average, while the control group’s confidence went down by -3%, as shown in Table

15. According to an independent-samples t-test, this di↵erence was significant

(t=-3.1, df=58, p<0.05).

Socratic Sca↵olding Questions

Finally, the last question was answered (“What is the relationship between

Socratic Tutor’s sca↵olding questions and learning gains?”). Students who used

Socratic Tutor received an average of 15.4 Socratic sca↵olding questions per

tutoring session (SD=7.1). The scatter plot in Figure 7 illustrates a positive

relationship between the number of sca↵olding questions and learning gains. The

52



Figure 7. Scatter plot of the relationship between Socratic sca↵olding questions and
learning gains

relationship was further investigated using a Pearson product-moment correlation

coe�cient, which showed a strong positive correlation between number of sca↵olding

questions and learning gains (r=0.68, N=32, p<0.05). In other words, a higher

number of Socratic sca↵olding questions was associated with higher learning gains.

Conclusion

An experiment was conducted with 70 undergraduate students enrolled in an

introductory computer science course to understand the e↵ectiveness of Socratic

Tutor. The study sought to answer the following research questions: (1) How much

do students learn when using Socratic Tutor? (2) How much does Socratic Tutor

a↵ect students with low programming knowledge? (3) How much do students learn

about each programming concept? (4) What is the relationship between the quality

and volume of self-explanation? (5) How much does Socratic Tutor a↵ect students’

self-confidence? and (6) What is the relationship between Socratic sca↵olding

questions and learning gains?
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The participants were divided into a control group, which had to read a code

and predict the output without any feedback, and a treatment group, which

interacted with Socratic Tutor. The learning gains for the treatment group were

45% higher and their post-test improvement was 24% higher than the control group.

Furthermore, students with lower prior programming knowledge in the treatment

group benefited significantly more than the control group in terms of their

pre-/post-test scores. The analysis for each programming concept showed the

improvement in the treatment group was higher, with a minimum of 10% and

maximum of 33%. However, only if-else and for loop showed a statistically

significant di↵erence in this regard. Furthermore, Socratic Tutor’s e↵ect on

students’ self-confidence was calculated. The treatment group’s confidence level rose

by 15%, while it went down by -3% in the control group. Finally, the relation

between feedback and learning gains showed a positive correlation (r=0.68).
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Chapter 5

Socratic Author: Auto-Generated Socratic Dialogue for Programming

Comprehension

The potential ability of intelligent tutoring systems (ITSs) to provide

individualized, one-on-one instruction for all students has been studied for decades,

with the first ITS systems developed as early as 1975 (Danielson & Nievergelt,

1975). ITSs were developed to aid students in the di↵erent phases of programming

(Bain & Barnes, 2014; Bosse & Gerosa, 2017; Lane & VanLehn, 2003; Truong et al.,

2005) and have been shown to improve the quality and e↵ectiveness of programming

instruction (Pillay, 2003), as indicated by students’ learning gains (A. Corbett et

al., 1999; Chassignol et al., 2018; Freedman et al., 2000). However, a major

challenge in developing ITSs for computer programming or any target domain are

the development or authoring costs. These costs are high because authoring content

and other needed elements for ITSs is tedious, error-prone, and time consuming and

usually involves domain experts, pedagogical experts, cognitive scientists, linguistic

experts in the case of dialogue-based ITSs, and software developers, to name a few

(V. Aleven et al., 2009; Blessing, 1997; He↵ernan et al., 2006; Murray, 2003).

One way to address this challenge is to automate the entire authoring

process, or as many parts of it as possible. To this end, automated authoring

systems have been developed in various domains, such as physics, mathematics, and

public policy, to increase accessibility and a↵ordability (He↵ernan et al., 2006). For

instance, (Jordan et al., 2001) built knowledge sources for a dialogue system in only

three months. The system used a graphical interface for teachers to construct

tutoring dialogue for physics. As another example, (V. Aleven et al., 2009)

developed a graphical interface to speed up the development of instructional

components, such as hints and other messages.

The work presented in this chapter represents another step toward fully
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automating the authoring process. More specifically, the chapter o↵ers a method to

automate the generation of content for a conversational (dialogue-based) ITS that

implements a Socratic method of tutoring to help students in introductory

programming courses improve their code comprehension skills.

This automated method relies on static analysis and dynamic simulations of

code examples, question generation, and automated assessment of student

responses. The method is explained in detail, illustrated with 15 Java code

examples and a qualitative analysis of the generated dialogue. The proposed

method is fully automated, thus enabling development at scale of ITSs across

di↵erent Java programming concepts.

The Socratic Tutoring Framework

Tutoring is one of the most e↵ective forms of instruction. Students in human

tutoring conditions show mean learning gains of 0.4–0.9 (non-expert) to 0.8–2.3

standard deviations (expert tutors) compared to students in traditional classroom

instruction (Bloom, 1984; Cohen et al., 1982; Graesser et al., 2009; Person et al.,

2007; VanLehn et al., 2007). Results have suggested there is something critical

about having a one-on-one connection, regardless of whether the student

communicates with a human or a computer. (Graesser et al., 1995) argued that the

remedial element of tutorial interaction, in which tutor and learner collaboratively

improve an initial answer to a problem, is the primary advantage of tutoring over

classroom instruction. (Chi et al., 2004) similarly hypothesized that tutoring

increases a learner’s capacity to reflect iteratively and actively on domain knowledge.

Furthermore, one-on-one tutoring has the advantage of engaging most students’

attention and interest more than other forms of instruction, such as lecturing, in

which the student might choose not to pay attention (VanLehn et al., 2007).

ITSs with conversational dialogue represent a special category of educational

technology based on constructivist theories of learning and the collaborative
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constructive activities that occur during human tutoring. They have been

demonstrated to promote learning gains up to an impressive e↵ect of 1.64 sigma,

higher than students learning the same content in canned text remediation

(VanLehn et al., 2007).

This study has focused on a particular type of conversational ITS that

implements a Socratic tutoring style based on prompting students to think and

provide information in the form of answers to questions. The questions are designed

to follow a directed, predefined line of reasoning (Rosé et al., 2001). Based on static

analysis and dynamic simulations of code examples that learners are prompted to

understand, this study proposes an automated method to generate a Socratic line of

reasoning and corresponding questions necessary to implement a Socratic tutorial

dialogue for code comprehension. To be able to automatically assess student

responses during interactive dialogue and provide brief feedback, benchmark

responses are created from abstract syntax trees. For each target node in the syntax

trees, the system generates a question whose correct or benchmark answer is the

target information. As an example, the static analysis of the statement int num =

10; results in the following benchmark answer declaring an integer variable num and

initializing it to 10 . When a student is prompted to answer the question What does

the statement in Line 1 do? the student response is automatically compared to the

corresponding benchmark response. If the two texts match, positive feedback is

provided, e.g., Great job! Otherwise, students receive negative feedback followed by

Socratic sca↵olding questions. The student may also receive neutral feedback,

depending on how semantically close their answer is to the benchmark answer. The

Socratic tutoring framework as shown in Figure 8 was adopted to automatically

generate content for a Socratic ITS.

The Socratic tutoring framework can be implemented adaptively, as not all

students will receive all the prompts/questions. For example, those who show
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Figure 8. The Socratic ITS Framework

mastery of certain concepts, such as loops, will be asked fewer questions about loops

than students who have yet to master that concept. This adaptive behavior thus

tailors the instruction to each learner, which should result in better learning

outcomes.

It should be noted that the above framework covers the inner loop or

within-task interaction of an ITS. Thus, it assumes that an instructional task has

been selected for the learner to work on, e.g., a particular Java code example.

Therefore, the goal is to automate the interaction with the learner within the task.

The outer loop, which is responsible for selecting an appropriate instructional task

for a given learner, is not described here (see VanLehn’s two-loop ITS framework

(Vanlehn, 2006)).

In addition, the Socratic line of reasoning for a target code example only

targets the program level or program model aspects of comprehension.

Comprehension theories make a distinction between the program model, domain

model, and situation model (Pennington, 1987b; Schulte et al., 2010). The program

model is some representation of the control-flow of the program or a direct mental

equivalent of the code. On the other hand, the domain model captures the function

or goals of the program from a target domain perspective. Thus, the domain model

describes the problem and solution being implemented. Finally, the situation model

captures an integrated view of both the program and domain models with an

emphasis on cross-references between the two models. Therefore, the situation
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model contains information not captured by the individual program and domain

models. In fact, there is evidence that the best code readers can build such an

integrated situation model by seeking to understand and infer cross-references

between the program and domain models.

Socratic Author Design

Socratic Author was designed and developed as a stand-alone tool that can

be used by ITS developers. The authoring tool requires only source code examples

as input to produce a full dialogue that can simply be played by a dialogue manager.

The current implementation was developed for the Java language to help students

understand Java code examples. The tool was developed in Python and the output

dialogue is in JSON format (JavaScript Object Notation, or JSON, is a lightweight

data-interchange format that is easy for machines to parse and generate). When

porting to a new target language, e.g., Python, the only components that need to be

changed are the static code analyzer and the underlying dynamic simulator of the

code, which are typically available as o↵-the-shelf components.

The architecture of the authoring tool consists of five major components:

question generation, benchmark answer generation, sca↵olding question generation,

run time information, and dialogue generation (see Figure 9). The dialogue

generation module takes as input the output of the other four components or

modules (question generation, answer generation, feedback generation, run time

information) to generate a complete segment of dialogue. As already noted, the

generated dialogue can be adaptively played by conversational ITSs. Therefore, all

learners do not need to be asked all questions; questions can be chosen adaptively

depending on learners’ knowledge and other characteristics, such as their emotional

state.
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Figure 9. Architecture of Socratic Author

The Question Generation Module

The question generation module uses a Java parser to identify programming

concepts and sub-concepts in an AST and program run time information from the

dynamic program simulation model. This allows the module to generate questions

based on the dynamic behavior of the code, e.g., how many times a loop is executed

and the values of the counter i during the execution. Furthermore, the AST allows

the module to generate questions based on the static code analysis, such as What is

the name of the integer variable declared in Line 1?. The previous questions were

generated from the code shown in Figure 10.

Based on the static analysis of the code, the tool generates three types of

sca↵olding questions. The first are definition questions to check students’ knowledge

of basic programming concepts, e.g.,What is the int keyword used for?. The second

type targets the syntactic understanding of programming concepts, e.g., Can you

indicate the loop’s stop condition?. The last are a sequence of related questions

targeting all aspects of programming statements. For instance, for an array of

integer declaration and initializing statement, a related question, e.g., What are the

values of the array arr after executing the statement in Line 5?. Therefore, the

sequence question targets the declaration and initialization aspects of the statement.

Another example would be for loop sequence questions, where each question in the
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Figure 10. Java for loop

sequence targets a critical element: the declaration and initialization of the loop

counter, the stop condition, and the increment/decrement statement (see Figure 11).

Finally, the module can group a set of questions for a code block, i.e., a

group of statements between balanced braces. The purpose is to ask the learner to

summarize the goal of the block, e.g., functions, loops, and if-else. For instance, a

block question generated for the code in Figure 10 is What does the code on the

block from Line 24 do?

There is one challenge with these block-level questions. Generating a

higher-level benchmark response summarizing the function of the block in order to

automatically assess student responses was beyond the scope of the current method,

which focused on the program model as opposed to the domain model.

Furthermore, automatically generating functional benchmark responses for a given

block of code is a challenging task the researcher plans to tackle in the future. For

this reason, the current solution to generate the benchmark responses for a given

block is to concatenate the benchmark responses of the individual statements in the

block, as detailed later.

The Benchmark Answer Generation Module

To generate a meaningful answer, the answer generation model starts with

the abstract syntax tree of the input Java program obtained from Java parser.

The model generates block- and statement-level answers by traversing the

syntax tree. A complete pass of the tree statement nodes generates a complete

sentence, where each type of node is associated with a predefined template. That is,

this study followed a template-based text generation approach, which is widely used
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Figure 11. Snapshot of auto-generated questions for Figure 10
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Figure 12. Abstract syntax tree for static final int x = 10

in natural language generation (Jurafsky & Martin, 2008). For instance, a complete

pass over the tree of the statement final static int = 10 produces the following

benchmark answer Declare a final static integer x and initialize it to 10 (see Figure

12. For block-level answers, the answer generation module first identifies the block

by matching the node type with a predefined list of types, e.g., function, loop, and

if-else, then analyzes the sub-tree to generate an answer for each statement in the

block. Next, the module combines the answers for each individual statement in the

block into a single paragraph. For example, the block-level answer for the for loop

presented in Figure 10 is “The for loop in line 2 iterates over the counter i from 0 to

9, increasing the counter by 1 in each iteration. In each iteration, the value of sum

is incremented to its current value plus the value of i.”
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The Code Simulation Module

Generating answers from abstract syntax trees is not enough because the

trees do not represent any run-time information. This is critical for code examples

that require user input, in which case the behavior of the code will change

depending on the user input. Therefore, a Java Debugger Interface (JDI) was used

to simulate the execution of Java programs and record variable values. This

information answers questions such as what is the value of the variable sum in Line

3 when i is 4 or what are the values of the counter i during the execution of the for

loop. Therefore, the simulation module o↵ers the ability to trace the execution of

Java code and generate questions based on the results of the dynamic execution of

the code.

The Socratic Sca↵olding Module

The Socratic sca↵olding module uses the information from the answer

generation module and a set of short predefined phrases expressing positive (Good

job), neutral (Good try), or negative (Not quite right) feedback to generate a more

complete utterance. The module responses consist of short feedback (e.g., Good job)

followed by an assertion of the correct answer. For incorrect of incomplete answers,

the module generates three levels of Socratic sca↵olding questions, as shown in

Figure 13. At the first level, a definition question about the targeted programming

concept is generated, e.g., What is the int keyword used for in Line 1? For Level 2,

a concept completion question is generated in the form of a fill-in-the-blank

question, e.g., The int keyword is used to a that can hold a signed

.. The expected keywords are declare, variable, and integer. Finally, at Level

3, a verification question in the form of a yes/no question is generated, e.g., Please

answer the following question by typing yes or no. Is the int keyword used to declare

a variable that can hold a signed integer?. Using yes/no questions allows the system

to verify common misconceptions students may have and correct them. No
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Figure 13. Snapshot of tutoring session

misconception information has been incorporated into the method to account for

and correct misconceptions, but this feature will be added in the future.

The Dialogue Module

Once the questions, answers, sca↵olding questions, and run-time simulations

are produced, the dialogue module generates a complete segment of dialogue in the

form of a sequence of questions and corresponding expected benchmark answers,

which are used to automatically assess whether student responses are correct using

a semantic similarity approach (Khayi & Rus, 2019). The dialogue is specified as a

JSON object. Figure 14 shows part of the auto-generated Socratic dialogue for the

program shown in Figure 10.
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Figure 14. Snapshot of auto-generated dialogue in JSON format
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Enacting the Dialogue Model

The dialogue generated for a given code example needs to be played by a

dialogue manager as part of a dialogue-based ITS. The role of the dialogue manager

is to present the learner with questions in a particular order. Typically, the dialogue

manager presents the questions in a sequence corresponding to the lines of code the

questions are about. For blocks, the Socratic dialogue starts with questions about

each statement within the code block. When all the statements in a block are

covered, the ITS asks the students to summarize the block. Other orders of

presenting the questions can be envisioned, such as the execution order of the lines

of code for a given input.

Besides the questions generated from the abstract syntax trees and the

dynamic execution of the code, there are two general types of questions or

statements: a question or statement to elicit self-explanation (Can you read the code

and explain in your own words what the code does and what it means to you while

you read the code?) and a prediction question or statement (Please read the code

and predict its output).

Each generated question is labeled internally according to its type and a list

of concepts in order to track students’ mastery of key programming concepts.

Therefore, this labeling mechanism gives the dialogue manager freedom to chose

what questions to present. Various ITS developers may choose di↵erent question

sequencing strategies. For instance, the following is a potential sequencing. The

dialogue manager starts by asking a student to explain the code in detail and

predict its output. The Socratic line of questioning is only triggered if the student’s

explanation and prediction are incorrect or incomplete. For instance, for incomplete

explanations, the sequencing strategy may be implemented to ask questions only

about the parts of the code that were not explained in su�cient detail.
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Figure 15. Socratic authoring tool interface

User Interface

The user interface is simple, easy to use, and consists of a text area to write

or paste Java code and three buttons (see Figure 15). The interface o↵ers authors

two options: (1) generate a Socratic dialogue and save it as a JSON script or (2)

start a tutoring session for testing purposes. Furthermore, the interface provides the

ability to choose what concepts the author prefers to generate a dialogue for. For

example, if an author wants to encourage students to practice for loops, they can

select the for loop concept only.

The authoring tool also o↵ers an interface for ITSs by using REST API

technology. This allows ITSs to easily integrate the tool by requesting a dialogue

script for a given Java code and getting as a response the corresponding dialogue as

a JSON object.

Conclusion

ITSs can generate impressive learning outcomes in many domains but have

seen relatively little use in training and school classrooms due to the time and cost

68



needed to design and author content. This study developed an authoring tool for

programming dialogue called Socratic Author to reduce the time and cost associated

with manually creating such dialogue. The tool allows teachers to create fully

functional Socratic tutoring dialogue for teaching programming from Java code

examples.

Socratic Author relies on static analysis and dynamic simulations of code

examples, question generation, and automated assessment of student responses. The

architecture of the authoring tool consists of five major components: question

generation, benchmark answer generation, sca↵olding question generation, run time

information, and dialogue generation (see Figure 9). The dialogue generation

module takes as input the output of the other four modules (question generation,

answer generation, feedback generation, run time information) to generate a

complete segment of dialogue. The generated dialogue can be adaptively played by

conversational ITSs. Therefore, all learners do not need to be asked all questions;

questions can be chosen adaptively depending on learners’ knowledge and other

characteristics, such as their emotional state.
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Chapter 6

Socratic Author Evaluations

Two evaluations were conducted To assess the authoring tool. The first had

a group of 13 programming instructors evaluate the auto-generated dialogue to

explore if this approach would be educationally useful. The second was conducted

as a control experiment by having 45 students in an introductory programming

course use auto-authored dialogue, expert-authored dialogue, or output only. The

second evaluation’s goal was to analyze the learning outcomes to see how easy,

e�cient, and friendly the system was.

Participants

In the first evaluation, the 13 participants were instructors teaching Java

programming courses. The second study’s participants were 45 undergraduate

students enrolled in an introductory programming course at a major 4-year Asian

university. These participants were divided into three groups of 15 each. Group 1

was assigned to a tutoring session where experts generated the tutoring dialogue.

Group 2 was assigned to a condition in which participants used auto-generated

tutoring dialogue. Group 3 was assigned to a scaled-down version of the system,

which presented Java code examples and asked about the output without providing

any sca↵olding questions or feedback.

Materials

Materials for the first evaluation study consisted of 15 auto-generated

dialogues from Java code examples that featured variables, if and if-else

conditionals, for loop, while loop, and array. The dialogues were formatted in a

human readable form and then shown one by one to each rater. At the end of each

dialogue, raters filled out a survey of 12 questions on a 5-point Likert scale from 1

(strongly disagree) to 5 (strongly agree) (see Table 20).

Materials for the controlled experiment included a pre-test and post-test
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measuring participants’ knowledge of key programming concepts and a

seven-question survey to evaluate the authored dialogue. The pre- and post-tests

were similar in terms of di�culty and contained six Java programs in which each

question assessed students’ understanding of a particular concept. For each question

in the pre- and post-tests, participants were asked to predict the code’s output.

Procedure

For the first evaluation, a survey link was emailed to 15 individuals teaching

introductory programming courses. The instructors were given five days to complete

the survey.

On the other hand, the controlled experiment was conducted in a computer

lab under supervision. First, participants were debriefed about the purpose of the

experiment and were given a consent form. Those who consented started by taking

a pre-test. Immediately after the pre-test, they participated in an approximately

60-minute tutoring session. Finally, they took the post-test and an evaluation

survey. Group 3 took no survey at the end of the experiment since they did not

interact with the ITS dialogue.

Assessment

The pre- and post-test questions were scored 1 when the student answer was

correct and 0 when incorrect. The learning gain score (LG) was calculated for each

participant as follows (Marx & Cummings, 2007).

LG =

8
>>>>>>><

>>>>>>>:

post-test�pre-test
100�pre-test post-test > pre-test

post-test�pre-test
pre-test post-test < pre-test

drop pre-test = post-test = 100 or 0

0 post-test = pre� test

(6.1)
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Table 16: Pre- and post-test means, SD, potential, improvement, and learning gains

Pre-test Post-test
Section N Mean SD Mean SD Potential Improvement Learning gain
Group 1 14 58 21 79.3 13 42 21.3 51%
Group 2 15 56 16 74 11 44 18 43%
Group 3 15 57 35 62 33 43 5 12%
*Final scores out of 100%

Table 17: Mean and SD of turns, words, sentences, and content words

Section Turns Words Sentences Content words
Mean SD Mean SD Mean SD Mean SD

Group 1 123 13 402 217 45 8 191 164
Group 2 115 28 334 183 35 18 154 106

Results

To understand each tutoring method’s overall e↵ect on students’ knowledge,

knowledge change is reported by group. Table 16 shows the average scores of the

pre-test for Groups 1 (58), 2 (56), and 3 (57), with a range of 2%. Thus, the

pre-test indicated the groups had similar knowledge at the outset. However, the

post-test scores improved by 21% in Group 1, 18% in Group 2, and 3% in Group 3.

These di↵erences between pre- and post-test scores showed vastly di↵erent learning

gains of 51% (Group 1), 43% (Group 2), and 12% (Group 3). This suggested the

auto-authored dialogue improved students’ knowledge by 43% and outperformed the

output-only group.

Despite the di↵erence in learning gains between Groups 1 and 2, a two-tailed

t-test showed no significant di↵erence between them (t=0.83, df=19, p>0.05).

However, the t-test did show a significant di↵erence in learning gains between

Group 3 and the other two groups (t=3.1, df=52, p<0.05).

To evaluate dialogue e�ciency, student responses were analyzed from

dialogue logs regarding the number of turns, words, sentences, and content words

produced by each group (see Table 17). On average, each tutoring session consisted
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Table 18: Mean and SD of Socratic sca↵olding questions and their success rate

Section Sca↵olding questions Level 1 Level 2 Level 3
Mean SD Mean SD Mean SD Mean SD

Group 1 28 4 55% 16 70% 23 61% 37
Group 2 31 7.5 41% 21 47% 13 73% 24

of 119 turns. Group 1 produced 402 words, 45 sentences, and 191 content words

within 123 turns, while Group 2 produced 334 words, 35 sentences, and 154 content

words within 115 turns. Therefore, students who worked with expert-written

dialogue interacted more with the tutor and produced more words, sentences, and

content words. However, a two-tailed t-test showed a significant di↵erence (t=6.13,

df=19, p<0.05) only in terms of sentences.

The dialogue logs were further analyzed to understand the di↵erence between

expert- and auto-generated Socratic sca↵olding questions. Table 18 shows the

average amount of questions received by students and the success rate. A question

was considered successful if the student provided the correct answer. Table 18 shows

that Group 1 received more sca↵olding questions and had a higher success rate in

the first and second level questions, while the third level of auto-generated feedback

had a 12% higher success rate. However, a two-tailed t-test showed a significant

di↵erence only in the first (t=3.6, df=25, p>0.05) and second (t=-4.1, df=25,

p<0.05) instances of feedback.

To understand how e�cient and user-friendly the system was, the results

from after the session survey were analyzed, as shown in Table 19. The survey

contained seven items on a 5-point Likert scale from 5 (strongly agree) to 1

(strongly disagree). Group 1 students agreed or strongly agreed with all questions

except Questions 5 and 6. On the other hand, Group 2 students agreed or strongly

agreed with all questions except Questions 5, 6, and 7. Fleiss’ kappa scores for

inter-rater reliability for Group 1 (0.52) and Group 2 (0.43) suggested the

agreement between participants was higher in Group 1 than in Group 2.
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Table 19: Mean and SD of student survey questions about tutoring dialogue

# Question Group 1 Group 2
Mean SD Mean SD

1 The questions were clear and easy to understand 4.3 0.9 4 0.8
2 The system was able to understand my answers

and respond accordingly
4.6 1.2 4.3 0.9

3 The sca↵olding questions from the system helped
me come up with the correct answer

4.4 0.5 4.2 0.4

4 The system was e↵ective at helping me understand
the code examples

4.6 0.5 4.4 0.7

5 The system was e↵ective at helping me understand
core programming concepts

3.6 1.1 3.7 1.2

6 The system helped me understand Java program-
ming

3.6 0.8 3.4 1.2

7 The system provided a useful learning experience 4.5 0.5 3.4 1.3

A survey of 13 introductory programming course instructors was conducted

to evaluate the quality of auto-generated dialogue from an educational standpoint.

Table 20 shows the results in terms of average and standard deviation for eight

questions on a 5-point Likert scale from 5 (strongly agree) to 1 (strongly disagree).

Questions 1 and 2 targeted the syntactic and semantic quality of the dialogue,

Question 3 asked about coherence and consistency, and the rest focused on

educational goals and whether raters thought they might use the system in their

teaching.

The instructors agreed or strongly agreed with all questions except Question

5. Thus, they thought the auto-generated dialogue would help students understand

Java programs better and learn programming concepts (Fleiss’ Kappa = 0.51).

However, they neither agreed nor disagreed that the dialogue would help students

develop a robust understanding of programming concepts. At the end of the survey,

raters were allowed to provide voluntary feedback, which was positive. For instance,

one of the raters stated that “the system looks promising. The dialogue looks

coherent to the point you feel it is not auto-generated.”
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Table 20: Mean and SD of instructor survey questions on auto-generated tutoring
dialogue

# Question Mean SD
1 I think the generated questions, sca↵olding questions, and

answers are syntactically correct.
4.2 0.55

2 I think the generated questions, sca↵olding questions, and
answers are semantically correct.

4.5 0.84

3 I think the generated dialogue is coherent and consistent. 4.4 0.45
4 I think the generated dialogue would help students understand

Java code.
4.2 0.84

5 I think the generated dialogue would help students develop a
robust understanding of programming concepts.

3.8 0.55

6 I think the generated Socratic sca↵olding questions would help
students learn and understand the corresponding Java code.

4.6 0.55

7 I think the generated dialogue covers all important program-
ming concepts presented in the code.

4.8 0.45

8 I think I may use this system in the classroom. 4.2 0.84

Conclusion

To assess the authoring tool, two evaluations were carried out. The first had

a group of 13 programming instructors evaluate the auto-generated dialogue and

explore whether this approach was beneficial. The second was conducted as a

controlled experiment in which 45 introductory programming students used

expert-authored dialogue (Group 1), auto-authored dialogue (Group 2), or output

only (Group 3). The second evaluation’s goal was to analyze the learning outcomes

to see how easy, e�cient, and friendly the system was.

The controlled experiment results suggested that auto-generated Socratic

dialogue for programming comprehension could improve students’ knowledge. For

example, the average learning gain of Group 2 students was 43%, compared to 12%

among Group 3 students. Group 1 students outperformed both Group 2 and Group

3, as anticipated, although this di↵erence was not statistically significant.

Analyzing tutoring logs showed that Group 1 students produced more words,

sentences, and content words and showed greater interaction with the system by
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taking more turns. Furthermore, this group received more sca↵olding questions and

had higher rates of success providing the correct answer to the first and second level

questions.

According to the post-tutoring survey, students in Group 1 agreed more

strongly with all questions except Questions 5 and 6, although Group 2 also

generally agreed or strongly agreed with the questions. However, the rating dropped

to neither agree nor disagree for Questions 5, 6, and 7. The overall results suggested

students preferred interacting with expert-written dialogue.

Programming instructors agreed or strongly agreed with all items in a survey

about the strengths of the tool. The only exception was Question 5, as instructors

neither agreed nor disagreed that the auto-generated dialogue would help students

develop a robust understanding of programming concepts. Based on these surveys,

expert-written tutoring dialogue outperformed auto-generated dialogue in many

areas. However, auto-generated dialogue can be created from Java code examples in

less than a minute and requires no technical or educational knowledge. Therefore,

considering the cost, skills, and time needed to generate expertly written dialogue,

the tool o↵ers a promising opportunity for students and teachers alike.
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Chapter 7

Conclusion and Future Work

This study explored an application of natural language technology in an

e↵ort to help novice programmers develop a deeper understanding of programming

concepts. This work demonstrates how natural language technology and guided

self-explanation through the Socratic teaching method can improve understanding

of programming concepts. The study has produced a Socratic dialogue-based

intelligent tutoring system (ITS) called “Socratic Tutor” and an automated dialogue

authoring tool called “Socratic Author” that generates Socratic dialogue from Java

source code.

The study aimed to determine how e↵ective the Socratic method would be at

eliciting learners to engage in self-explanation when using Socratic Tutor and the

quality of Socratic Author’s output. The research questions asked (1) can a Socratic

ITS lead to improved code comprehension? and (2) to what extent can Socratic

dialogue be developed automatically?

This study used a novel approach by leveraging a Socratic ITS for

programming students. Therefore, it helps establish a relationship between code

comprehension and the use of the Socratic method in computer science as well as

between learning gains and student responses in open-ended dialogue. Furthermore,

the work introduces a novel approach for generating Socratic dialogue from Java

source code. This approach could help teachers and ITS developers automatically

create dialogue by entering Java code without requiring non–domain knowledge.

Socratic Tutor is a dialogue-based ITS that uses NLP techniques to promote

a deeper understanding of programming concepts. The system simulates a more

realistic student-tutor setting by using natural language, allowing the system to ask

any type of question a human tutor might ask and evaluate any natural language

answer. Moreover, the system is language-independent and can be used to help with
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any programming language. Many dialogue-based ITSs have been developed for

computer programming; unlike past e↵orts, however, Socratic Tutor is a novel

dialogue-based ITS that uses the Socratic teaching method to tutor students on

computer programming.

Socratic Tutor was evaluated through an experiment involving 34 urban

university students taking an introduction to computer programming course.

Learning gains increased by 52% or 12.58 points from the pre-test to the post-test,

and students with lower knowledge at the beginning benefited more from the

system, with a 4.57% increase in learning gains on the post-test.

The findings indicated that the type of support given had a definite e↵ect on

novice programmers. Socratic Tutor provides three levels of sca↵olding, as shown in

Table 8. On average, students were able to provide the correct answer after

receiving the Level-1 question 62% of the time. This rate increased to 76% at Level

2; however, it dropped by 7% at Level 3. Therefore, the most e↵ective sca↵olding

questions were fill-in-the-blank, with a success rate of 76%, while multiple-choice

was the second most helpful, with a success rate of 69%. The least helpful was

concept explanation, with a success rate of 62%.

Another experiment was conducted with 70 undergraduate students enrolled

in an introductory computer science course to further explore Socratic Tutor’s

e↵ectiveness. The participants were divided into two groups: a control group that

read a code and predicted the output without any Socratic sca↵olding questions or

feedback and a treatment group that interacted with Socratic Tutor. The learning

gains for the treatment group were 45% higher than the control group. Furthermore,

students with lower prior programming knowledge in the treatment group benefited

significantly more in terms of pre-/post-test scores. The treatment group’s

improvement was higher in each programming concept, with a minimum of 10% and

a maximum of 33%. However, only if-else and for loop showed a statistically
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significant di↵erence in this regard. Furthermore, Socratic Tutor’s e↵ect on students’

self-confidence was calculated. The treatment group’s confidence level rose by 13%,

while it went down by -1.6% in the control group. Finally, the relation between

sca↵olding questions and learning gains showed a positive correlation (r=0.68).

Socratic Author relies on static analysis and dynamic simulations of code

examples, question generation, and automated assessment of student responses. The

architecture of the authoring tool consists of five major components: question

generation, benchmark answer generation, sca↵olding question generation, run time

information, and dialogue generation (see Figure 9). The dialogue generation

module uses the output of the other four modules to generate a complete segment of

dialogue. The generated dialogue can be adaptively played by conversational ITSs.

Therefore, all learners do not need to be asked all questions; questions can be

chosen adaptively depending on learners’ knowledge and other characteristics, such

as their emotional state.

To assess the authoring tool, two evaluations were carried out. The first had

a group of 13 programming instructors evaluate the auto-generated dialogue and

explore whether this approach was beneficial. The second was conducted as a

controlled experiment in which 45 introductory programming students used

expert-authored dialogue (Group 1), auto-authored dialogue (Group 2), or output

only (Group 3). The second evaluation’s goal was to analyze the learning outcomes

to see how easy, e�cient, and friendly the system was.

The controlled experiment results suggested that auto-generated Socratic

dialogue for programming comprehension could improve students’ knowledge. For

example, the average learning gain of Group 2 students was 43%, compared to 12%

among Group 3 students. Group 1 students outperformed both Group 2 and Group

3, as anticipated, although this di↵erence was not statistically significant.

Analyzing tutoring logs showed that Group 1 students produced more words,
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sentences, and content words and showed greater interaction with the system by

taking more turns. Furthermore, this group received more sca↵olding questions and

had higher rates of success providing the correct answer to the first and second level

questions.

According to the post-tutoring survey, students in Group 1 agreed more

strongly with all questions except Questions 5 and 6, although Group 2 also

generally agreed or strongly agreed with the questions. However, the rating dropped

to neither agree nor disagree for Questions 5, 6, and 7. The overall results suggested

students preferred interacting with expert-written dialogue.

Programming instructors agreed or strongly agreed with all items in a survey

about the strengths of the tool. The only exception was Question 5, as instructors

neither agreed nor disagreed that the auto-generated dialogue would help students

develop a robust understanding of programming concepts. Based on these surveys,

expert-written tutoring dialogue outperformed auto-generated dialogue in many

areas. However, auto-generated dialogue can be created from Java code examples in

less than a minute and requires no technical or educational knowledge. Therefore,

considering the cost, skills, and time needed to generate expertly written dialogue,

the tool o↵ers a promising opportunity for students and teachers alike.

Future Work

Future work could involve improving Socratic Author to generate Socratic

dialogue for other programming languages, such as Python or C++. Furthermore,

Socratic Author has many potential applications to help novice programmers, such

as code explanation and question answering. For example, students could paste a

code and ask the tool to explain it and answer questions about the code. Finally,

the researcher plan to improve the answer generation module to produce the

function or goals of code examples.
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Delić, H., & Bećirović, S. (2016). Socratic method as an approach to teaching.
European researcher. Series A(10), 511–517.

85



DeLooze, L. L. (1991). Its ada: An intelligent tutoring system for the ada
programming language (Tech. Rep.). Naval Postgraduate School Monterey
CA.

Desmarais, M. C., & Baker, R. S. (2012). A review of recent advances in learner
and skill modeling in intelligent learning environments. User Modeling and
User-Adapted Interaction, 22 (1-2), 9–38.

Dobre, I. (2014). An Intelligent Tutoring System for Tutoring the Computers
Programming and C Language Discipline. In The International Scientific
Conference E-Learning and Software for Education (Vol. 2, p. 142).

Du Boulay, B. (1986). Some di�culties of learning to program. Journal of
Educational Computing Research, 2 (1), 57–73.
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