373 research outputs found

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    Reconfigurable Intelligent Surfaces Aided mmWave NOMA: Joint Power Allocation,Phase Shifts, and Hybrid Beamforming Optimization

    Full text link
    In this paper, an reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) non-orthogonal multiple access (NOMA) system is considered. In particular, we consider an RIS-aided mmWave-NOMA downlink system with a hybrid beamforming structure. To maximize the achievable sum-rate under a minimum rate constraint for the users and a minimum transmit power constraint, a joint RIS phase shifts, hybrid beamforming, and power allocation problem is formulated. To solve this non-convex optimization problem, we develop an alternating optimization algorithm. Specifically, first, the non-convex problem is transformed into three subproblems, i.e., power allocation, joint phase shifts and analog beamforming optimization, and digital beamforming design. Then, we solve the power allocation problem under fixed phase shifts of the RIS and hybrid beamforming. Finally, given the power allocation matrix, an alternating manifold optimization (AMO)-based method and a successive convex approximation (SCA)-based method are utilized to design the phase shifts, analog beamforming, and transmit beamforming, respectively. Numerical results reveal that the proposed alternating optimization algorithm outperforms state-of-the-art schemes in terms of sum-rate. Moreover, compared to a conventional mmWave-NOMA system without RIS, the proposed RIS-aided mmWave-NOMA system is capable of improving the achievable sum-rate of the system

    Intelligent Reflective Surface Deployment in 6G: A Comprehensive Survey

    Full text link
    Intelligent reflecting surfaces (IRSs) are considered a promising technology that can smartly reconfigure the wireless environment to enhance the performance of future wireless networks. However, the deployment of IRSs still faces challenges due to highly dynamic and mobile unmanned aerial vehicle (UAV) enabled wireless environments to achieve higher capacity. This paper sheds light on the different deployment strategies for IRSs in future terrestrial and non-terrestrial networks. Specifically, in this paper, we introduce key theoretical concepts underlying the IRS paradigm and discuss the design aspects related to the deployment of IRSs in 6G networks. We also explore optimization-based IRS deployment techniques to improve system performance in terrestrial and aerial IRSs. Furthermore, we survey model-free reinforcement learning (RL) techniques from the deployment aspect to address the challenges of achieving higher capacity in complex and mobile IRS-assisted UAV wireless systems. Finally, we highlight challenges and future research directions from the deployment aspect of IRSs for improving system performance for the future 6G network.Comment: 16 pages, 3 Figures, 7 table

    Joint Design for Simultaneously Transmitting And Reflecting (STAR) RIS Assisted NOMA Systems

    Full text link
    Different from traditional reflection-only reconfigurable intelligent surfaces (RISs), simultaneously transmitting and reflecting RISs (STAR-RISs) represent a novel technology, which extends the half-space coverage to full-space coverage by simultaneously transmitting and reflecting incident signals. STAR-RISs provide new degrees-of-freedom (DoF) for manipulating signal propagation. Motivated by the above, a novel STAR-RIS assisted non-orthogonal multiple access (NOMA) (STAR-RIS-NOMA) system is proposed in this paper. Our objective is to maximize the achievable sum rate by jointly optimizing the decoding order, power allocation coefficients, active beamforming, and transmission and reflection beamforming. However, the formulated problem is non-convex with intricately coupled variables. To tackle this challenge, a suboptimal two-layer iterative algorithm is proposed. Specifically, in the inner-layer iteration, for a given decoding order, the power allocation coefficients, active beamforming, transmission and reflection beamforming are optimized alternatingly. For the outer-layer iteration, the decoding order of NOMA users in each cluster is updated with the solutions obtained from the inner-layer iteration. Moreover, an efficient decoding order determination scheme is proposed based on the equivalent-combined channel gains. Simulation results are provided to demonstrate that the proposed STAR-RIS-NOMA system, aided by our proposed algorithm, outperforms conventional RIS-NOMA and RIS assisted orthogonal multiple access (RIS-OMA) systems

    Joint Beamforming Design for RIS-enabled Integrated Positioning and Communication in Millimeter Wave Systems

    Full text link
    Integrated positioning and communication (IPAC) system and reconfigurable intelligent surface (RIS) are both considered to be key technologies for future wireless networks. Therefore, in this paper, we propose a RIS-enabled IPAC scheme with the millimeter wave system. First, we derive the explicit expressions of the time-of-arrival (ToA)-based Cram\'er-Rao bound (CRB) and positioning error bound (PEB) for the RIS-aided system as the positioning metrics. Then, we formulate the IPAC system by jointly optimizing active beamforming in the base station (BS) and passive beamforming in the RIS to minimize the transmit power, while satisfying the communication data rate and PEB constraints. Finally, we propose an efficient two-stage algorithm to solve the optimization problem based on a series of methods such as the exhaustive search and semidefinite relaxation (SDR). Simulation results show that by changing various critical system parameters, the proposed RIS-enabled IPAC system can cater to both reliable data rates and high-precision positioning in different transmission environments

    RIS-Aided Cell-Free Massive MIMO Systems for 6G: Fundamentals, System Design, and Applications

    Full text link
    An introduction of intelligent interconnectivity for people and things has posed higher demands and more challenges for sixth-generation (6G) networks, such as high spectral efficiency and energy efficiency, ultra-low latency, and ultra-high reliability. Cell-free (CF) massive multiple-input multiple-output (mMIMO) and reconfigurable intelligent surface (RIS), also called intelligent reflecting surface (IRS), are two promising technologies for coping with these unprecedented demands. Given their distinct capabilities, integrating the two technologies to further enhance wireless network performances has received great research and development attention. In this paper, we provide a comprehensive survey of research on RIS-aided CF mMIMO wireless communication systems. We first introduce system models focusing on system architecture and application scenarios, channel models, and communication protocols. Subsequently, we summarize the relevant studies on system operation and resource allocation, providing in-depth analyses and discussions. Following this, we present practical challenges faced by RIS-aided CF mMIMO systems, particularly those introduced by RIS, such as hardware impairments and electromagnetic interference. We summarize corresponding analyses and solutions to further facilitate the implementation of RIS-aided CF mMIMO systems. Furthermore, we explore an interplay between RIS-aided CF mMIMO and other emerging 6G technologies, such as next-generation multiple-access (NGMA), simultaneous wireless information and power transfer (SWIPT), and millimeter wave (mmWave). Finally, we outline several research directions for future RIS-aided CF mMIMO systems.Comment: 30 pages, 15 figure
    corecore