48,032 research outputs found

    A Framework for Efficient Execution of Logic Programs.

    Get PDF
    The focus of this dissertation is to develop an efficient framework for sequential execution of logic programs. Within this framework the logic programs are executed by pruning the goal-search tree whenever applicable. Three new concepts for pruning of computation during execution of logic programs are introduced. (1) Failure-binding. A Failure-binding for a literal is a binding which when applied to the literal fails the goal obtained from the literal. Failure-bindings for a literal are identified by analyzing the goal-tree of a goal which is obtained from the literal. The failure-bindings for a literal are used for intelligent backtracking based on the generator-consumer approach. Intelligent backtracking based on failure-bindings prune the computation of search space which lead to late detection of failure. (2) Failure-solution. A Failure-solution of a goal is unacceptable to some other subgoal in the forward execution. Failure-solutions of a goal are identified by analyzing the history of computation, during execution. Failure-solutions of the goals are used for intelligent forward execution. Intelligent forward execution prunes the computation of search space which leads to repeated failure resulting from repeated successes of a goal. (3) Forward jumping. Forward jumping is a method to avoid reexecution of some subgoals after backtracking (instead of naive forward execution after backtracking). Forward jumping is based on the dynamic subgoal dependencies in a rule. Such jumping prunes the computation of the search spaces which leads to the same sequences of successes of subgoals after backtracking. To facilitate the implementation of these concepts a new data structure, called segmented-stack, is defined. The space complexity of a segmented stack is linear in the number of nodes in the stack. Depth-first search as well as breadth-first search are very easily implemented on a segmented-stack during execution of logic programs. Execution of logic programs on a segmented-stack allows association of the search space, as well as the solutions, of a goal with the frame of the goal. This enables implementation of intelligent backtracking, intelligent forward execution and forward jumping. The search based on each of these paradigms is proved to be sound and complete. It is also shown that the implementation of these paradigms preserves the order of results obtained by Prolog. The effects of the non-logical operators, in Prolog, on the paradigms are studied. The search based on the these paradigms is compared individually, and collectively, with the standard search by Prolog

    Efficient management of backtracking in and-parallelism

    Full text link
    A backtracking algorithm for AND-Parallelism and its implementation at the Abstract Machine level are presented: first, a class of AND-Parallelism models based on goal independence is defined, and a generalized version of Restricted AND-Parallelism (RAP) introduced as characteristic of this class. A simple and efficient backtracking algorithm for R A P is then discussed. An implementation scheme is presented for this algorithm which offers minimum overhead, while retaining the performance and storage economy of sequent ial implementations and taking advantage of goal independence to avoid unnecessary backtracking ("restricted intelligent backtracking"). Finally, the implementation of backtracking in sequential and AND-Parallcl systems is explained through a number of examples

    An abstract machine for restricted and-parallel execution of logic programs

    Full text link
    Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Divided we stand: Parallel distributed stack memory management

    Get PDF
    We present an overview of the stack-based memory management techniques that we used in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe that the problems associated with non-deterministic and-parallel systems are more general than those encountered in or-parallel and deterministic and-parallel systems, which can be seen as subsets of this more general case. We develop on the previously proposed "marker scheme", lifting some of the restrictions associated with the selection of goals while keeping (virtual) memory consumption down. We also review some of the other problems associated with the stack-based management scheme, such as handling of forward and backward execution, cut, and roll-backs

    Cinnamons: A Computation Model Underlying Control Network Programming

    Full text link
    We give the easily recognizable name "cinnamon" and "cinnamon programming" to a new computation model intended to form a theoretical foundation for Control Network Programming (CNP). CNP has established itself as a programming paradigm combining declarative and imperative features, built-in search engine, powerful tools for search control that allow easy, intuitive, visual development of heuristic, nondeterministic, and randomized solutions. We define rigorously the syntax and semantics of the new model of computation, at the same time trying to keep clear the intuition behind and to include enough examples. The purposely simplified theoretical model is then compared to both WHILE-programs (thus demonstrating its Turing-completeness), and the "real" CNP. Finally, future research possibilities are mentioned that would eventually extend the cinnamon programming into the directions of nondeterminism, randomness, and fuzziness.Comment: 7th Intl Conf. on Computer Science, Engineering & Applications (ICCSEA 2017) September 23~24, 2017, Copenhagen, Denmar
    • …
    corecore