4,964 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Diagnosis electromechanical system by means CNN and SAE: an interpretable-learning study

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cyber-physical systems are the response to the adaptability, scalability and accurate demands of the new era of manufacturing called Industry 4.0. They will become the core technology of control and monitoring in smart manufacturing processes. In this regard, the complexity of industrial systems implies a challenge for the implementation of monitoring and diagnosis schemes. Moreover, the challenges that is presented in technological aspects regarding connectivity, data management and computing are being resolved through different IT-OT (information technology and operational technology) convergence proposals. These solutions are making it possible to have large computing capacities and low response latency. However, regarding the logical part of information processing and analysis, this still requires additional studies to identify the options with a better complexity-performance trade-off. The emergence of techniques based on artificial intelligence, especially those based on deep-learning, has provided monitoring schemes with the capacity for characterization and recognition in front of complex electromechanical systems. However, most deep learning-based schemes suffer from critical lack of interpretability lying to low generalization capabilities and overfitted responses. This paper proposes a study of two of the main deep learning-based techniques applied to fault diagnosis in electromechanical systems. An analysis of the interpretability of the learning processes is carried out, and the approaches are evaluated under common performance metrics.Peer ReviewedPostprint (published version

    Novel Methods Based on Deep Learning Applied to Condition Monitoring in Smart Manufacturing Processes

    Get PDF
    The Industry 4.0 is the recent trend of automation and the rotating machinery takes a role of great relevance when it comes to meet the demands and challenges of smart manufacturing. Condition-based monitoring (CBM) schemes are the most prominent tool to cover the task of predictive diagnosis. With the current demand of the industry and the increasing complexity of the systems, it is vital to incorporate CBM methodologies that are capable of facing the variability and complexity of manufacturing processes. In recent years, various deep learning techniques have been applied successfully in different areas of research, such as image recognition, robotics, and the detection of abnormalities in clinical studies; some of these techniques have been approaching to the diagnosis of the condition in rotating machinery, promising great results in the Industry 4.0 era. In this chapter, some of the deep learning techniques that promise to make important advances in the field of intelligent fault diagnosis in industrial electromechanical systems will be addressed

    Development of a micromanipulation system with force sensing

    Get PDF
    This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution. In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated

    STANDARDS IN CONTROL AND PROTECTION TEHNOLOGY FOR ELECTRIC POWER SYSTEMS

    Get PDF
    The features of the standard IEC 16850 with respect to intelligent applications in substations are summarized. It is shown how modeling of functions independently from its allocation to devices allows optimizing existing applications and opening up for future intelligent applications. The data model provides all information in a substation needed not only for control and protection functions but also about the IEDs and the switchgear configuration.electric power systems

    STANDARDS IN CONTROL AND PROTECTION TEHNOLOGY FOR ELECTRIC POWER SYSTEMS

    Get PDF
    The features of the standard IEC 16850 with respect to intelligent applications in substations are summarized. It is shown how modeling of functions independently from its allocation to devices allows optimizing existing applications and opening up for future intelligent applications. The data model provides all information in a substation needed not only for control and protection functions but also about the IEDs and the switchgear configuration.electric power system

    Vehicle safety systems

    Get PDF
    corecore