3,799 research outputs found

    Blocked All-Pairs Shortest Paths Algorithm on Intel Xeon Phi KNL Processor: A Case Study

    Full text link
    Manycores are consolidating in HPC community as a way of improving performance while keeping power efficiency. Knights Landing is the recently released second generation of Intel Xeon Phi architecture. While optimizing applications on CPUs, GPUs and first Xeon Phi's has been largely studied in the last years, the new features in Knights Landing processors require the revision of programming and optimization techniques for these devices. In this work, we selected the Floyd-Warshall algorithm as a representative case study of graph and memory-bound applications. Starting from the default serial version, we show how data, thread and compiler level optimizations help the parallel implementation to reach 338 GFLOPS.Comment: Computer Science - CACIC 2017. Springer Communications in Computer and Information Science, vol 79

    Wilson and Domainwall Kernels on Oakforest-PACS

    Full text link
    We report the performance of Wilson and Domainwall Kernels on a new Intel Xeon Phi Knights Landing based machine named Oakforest-PACS, which is co-hosted by University of Tokyo and Tsukuba University and is currently fastest in Japan. This machine uses Intel Omni-Path for the internode network. We compare performance with several types of implementation including that makes use of the Grid library. The code is incorporated with the code set Bridge++.Comment: 8 pages, 9 figures, Proceedings for the 35th International Symposium on Lattice Field Theory (Lattice 2017

    DD-α\alphaAMG on QPACE 3

    Full text link
    We describe our experience porting the Regensburg implementation of the DD-α\alphaAMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knights Landing). We then describe the modifications in the communication library necessitated by the switch from InfiniBand to Omni-Path. Finally, we present the performance of the code on a single processor as well as the scaling on many nodes, where in both cases the speedup factor is close to the theoretical expectations.Comment: 12 pages, 6 figures, Proceedings of Lattice 201

    Landau Collision Integral Solver with Adaptive Mesh Refinement on Emerging Architectures

    Full text link
    The Landau collision integral is an accurate model for the small-angle dominated Coulomb collisions in fusion plasmas. We investigate a high order accurate, fully conservative, finite element discretization of the nonlinear multi-species Landau integral with adaptive mesh refinement using the PETSc library (www.mcs.anl.gov/petsc). We develop algorithms and techniques to efficiently utilize emerging architectures with an approach that minimizes memory usage and movement and is suitable for vector processing. The Landau collision integral is vectorized with Intel AVX-512 intrinsics and the solver sustains as much as 22% of the theoretical peak flop rate of the Second Generation Intel Xeon Phi, Knights Landing, processor

    MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Get PDF
    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library

    MILC staggered conjugate gradient performance on Intel KNL

    Full text link
    We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the Intel Knights Landing (KNL) architecture. KNL is the second gener- ation Intel Xeon Phi processor. It is capable of massive thread parallelism, data parallelism, and high on-board memory bandwidth and is being adopted in supercomputing centers for scientific research. The CG solver consumes the majority of time in production running, so we have spent most of our effort on it. We compare performance of an MPI+OpenMP baseline version of the MILC code with a version incorporating the QPhiX staggered CG solver, for both one-node and multi-node runs.Comment: 8 pages, 4 figure

    Performance analysis and optimization of the JOREK code for many-core CPUs

    Get PDF
    This report investigates the performance of the JOREK code on the Intel Knights Landing and Skylake processor architectures. The OpenMP scaling of the matrix construction part of the code was analyzed and improved synchronization methods were implemented. A new switch was implemented to control the number of threads used for the linear equation solver independently from other parts of the code. The matrix construction subroutine was vectorized, and the data locality was also improved. These steps led to a factor of two speedup for the matrix construction

    Performance analysis on the Intel Knights Landing architecture

    Get PDF
    One of the emerging architectures in HPC systems is Intel’s Knights Landing (KNL) many core chip, which will also be part of BSC’s next HPC installation MareNostrum 4. KNL is the code name of the second generation of Intel XEON Phi, a many integrated core architecture (MIC) with up to 72 cores with four-time hyper-threading. It includes up to 384 GB of DDR4 RAM and 8-16 GB of stacked MCDRAM, a version of high bandwidth memory. In addition, each core will have two 512-bit vector units and will support AVX-512 SIMD instructions
    • …
    corecore