995 research outputs found

    ModHMM: A Modular Supra-Bayesian Genome Segmentation Method

    Get PDF
    Genome segmentation methods are powerful tools to obtain cell type or tissue-specific genome-wide annotations and are frequently used to discover regulatory elements. However, traditional segmentation methods show low predictive accuracy and their data-driven annotations have some undesirable properties. As an alternative, we developed ModHMM, a highly modular genome segmentation method. Inspired by the supra-Bayesian approach, it incorporates predictions from a set of classifiers. This allows to compute genome segmentations by utilizing state-of-the-art methodology. We demonstrate the method on ENCODE data and show that it outperforms traditional segmentation methods not only in terms of predictive performance, but also in qualitative aspects. Therefore, ModHMM is a valuable alternative to study the epigenetic and regulatory landscape across and within cell types or tissues

    Joint modeling of ChIP-seq data via a Markov random field model

    Get PDF
    Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein-binding sites. In this paper, we present a Markov random field model for the joint analysis of multiple ChIP-seq experiments. The proposed model naturally accounts for spatial dependencies in the data, by assuming first-order Markov dependence and, for the large proportion of zero counts, by using zero-inflated mixture distributions. In contrast to all other available implementations, the model allows for the joint modeling of multiple experiments, by incorporating key aspects of the experimental design. In particular, the model uses the information about replicates and about the different antibodies used in the experiments. An extensive simulation study shows a lower false non-discovery rate for the proposed method, compared with existing methods, at the same false discovery rate. Finally, we present an analysis on real data for the detection of histone modifications of two chromatin modifiers from eight ChIP-seq experiments, including technical replicates with different IP efficiencies

    Finite Bayesian mixture models with applications in spatial cluster analysis and bioinformatics

    Get PDF
    In many statistical applications, one encounters populations that form homogenous subgroups regarding one or several characteristics. Across the subgroups, however, heterogeneity may often be found. Mixture distributions are a natural means to model data from such applications. This PhD thesis is based on two projects that focus on such applications. In the first project, spatial nanoscale clusters formed by Ras proteins in the cell membrane are investigated. Such clusters play a crucial role in intracellular communication and are thus of interest in cancer research. In this case, the subgroups are clustered and non-clustered proteins. In the second project, epigenomic data obtained from sequencing experiments are integrated with another genomic or epigenomic input, aiming, e.g., to detect genes that contribute to the development of cancer. Here, the subgroups are defined by a) genes presenting congruent (epi)genomic aberrations in both considered variables, b) genes presenting incongruent aberrations, and c) genes lacking aberrations in at least one of the variables. Employing a Bayesian framework, objects are classified in both projects by fitting finite univariate mixture distributions with a small fixed number of components to values from a score summarizing relevant information about the research question. Such mixture distributions have favorable characteristics in terms of interpretation and present little sensitivity to label switching in Markov Chain Monte Carlo analyses. Mixtures of gamma distributions are considered for Ras proteins, while mixtures of normal and exponential or gamma distributions are a focus for the bioinformatic analysis. In the latter, classification is the primary goal, while in the Ras protein application, estimating key parameters of the spatial clustering is of more interest. The results of both projects are presented in this thesis. For both applications, the methods have been implemented in software and their performance is compared with competing approaches on experimental as well as on simulated data. To warrant an appropriate simulation of Ras protein patterns, a new cluster point process model called the double Matérn cluster process is developed and described in this thesis

    Statistical Methods in Integrative Genomics

    Get PDF
    Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    jMOSAiCS: joint analysis of multiple ChIP-seq datasets

    Get PDF
    The ChIP-seq technique enables genome-wide mapping of in vivo protein-DNA interactions and chromatin states. Current analytical approaches for ChIP-seq analysis are largely geared towards single-sample investigations, and have limited applicability in comparative settings that aim to identify combinatorial patterns of enrichment across multiple datasets. We describe a novel probabilistic method, jMOSAiCS, for jointly analyzing multiple ChIP-seq datasets. We demonstrate its usefulness with a wide range of data-driven computational experiments and with a case study of histone modifications on GATA1-occupied segments during erythroid differentiation. jMOSAiCS is open source software and can be downloaded from Bioconductor [1]

    A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets

    Get PDF
    We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin features to the overall prediction of expression levels

    ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.

    Get PDF
    Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq) has greatly improved the reliability with which transcription factor binding sites (TFBSs) can be identified from genome-wide profiling studies. Many computational tools are developed to detect binding events or peaks, however the robust detection of weak binding events remains a challenge for current peak calling tools. We have developed a novel Bayesian approach (ChIP-BIT) to reliably detect TFBSs and their target genes by jointly modeling binding signal intensities and binding locations of TFBSs. Specifically, a Gaussian mixture model is used to capture both binding and background signals in sample data. As a unique feature of ChIP-BIT, background signals are modeled by a local Gaussian distribution that is accurately estimated from the input data. Extensive simulation studies showed a significantly improved performance of ChIP-BIT in target gene prediction, particularly for detecting weak binding signals at gene promoter regions. We applied ChIP-BIT to find target genes from NOTCH3 and PBX1 ChIP-seq data acquired from MCF-7 breast cancer cells. TF knockdown experiments have initially validated about 30% of co-regulated target genes identified by ChIP-BIT as being differentially expressed in MCF-7 cells. Functional analysis on these genes further revealed the existence of crosstalk between Notch and Wnt signaling pathways
    • …
    corecore