9 research outputs found

    A supplier selection using a hybrid grey based hierarchical clustering and artificial bee colony

    Get PDF
    Selection of one or a combination of the most suitable potential providers and outsourcing problem is the most important strategies in logistics and supply chain management. In this paper, selection of an optimal combination of suppliers in inventory and supply chain management are studied and analyzed via multiple attribute decision making approach, data mining and evolutionary optimization algorithms. For supplier selection in supply chain, hierarchical clustering according to the studied indexes first clusters suppliers. Then, according to its cluster, each supplier is evaluated through Grey Relational Analysis. Then the combination of suppliers’ Pareto optimal rank and costs are obtained using Artificial Bee Colony meta-heuristic algorithm. A case study is conducted for a better description of a new algorithm to select a multiple source of suppliers

    Supplier selection with support vector regression and twin support vector regression

    Get PDF
    Tedarikçi seçimi sorunu son zamanlarda literatürde oldukça ilgi görmektedir. Güncel literatür, yapay zeka tekniklerinin geleneksel istatistiksel yöntemlerle karşılaştırıldığında daha iyi bir performans sağladığını göstermektedir. Son zamanlarda, destek vektör makinesi, araştırmacılar tarafından çok daha fazla ilgi görse de, buna dayalı tedarikçi seçimi çalışmalarına pek sık rastlanmamaktadır. Bu çalışmada, tedarikçi kredi endeksini tahmin etmek amacıyla, destek vektör regresyon (DVR) ve ikiz destek vektör regresyon (İDVR) teknikleri kullanılmıştır. Pratikte, tedarikçi verisini içeren örneklemler sayıca oldukça yetersizdir. DVR ve İDVR daha küçük örneklemlerle analiz yapmaya uyarlanabilir. Tedarikçilerin belirlenmesinde DVR ve İDVR yöntemlerinin tahmin kesinlikleri karşılaştırılmıştır. Gerçek örnekler İDVR yönteminin DVR yöntemine kıyasla üstün olduğunu göstermektedir.Suppliers’ selection problem has attracted considerable research interest in recent years. Recent literature show that artificial intelligence techniques achieve better performance than traditional statistical methods. Recently, support vector machine has received much more attention from researchers, while studies on supplier selection based on it are few. In this paper, we applied the support vector regression (SVR) and twin support vector regression (TSVR) techniques to predict the supplier credit index. In practice, the suppliers’ samples are very insufficient. SVR and TSVR are adaptive to deal with small samples. The prediction accuracies for SVR and TSVR methods are compared to choose appropriate suppliers. The actual examples illustrate that TSVR methods are superior to SVR

    Destek Vektör Regresyon ve İkiz Destek Vektör Regresyon Yöntemi ile Tedarikçi Seçimi

    Get PDF
    Suppliers’ selection problem has attracted considerable research interest in recent years. Recent literature show that artificial intelligence techniques achieve better performance than traditional statistical methods. Recently, support vector machine has received much more attention from researchers, while studies on supplier selection based on it are few. In this paper, we applied the support vector regression (SVR) and twin support vector regression (TSVR) techniques to predict the supplier credit index. In practice, the suppliers’ samples are very insufficient. SVR and TSVR are adaptive to deal with small samples. The prediction accuracies for SVR and TSVR methods are compared to choose appropriate suppliers. The actual examples illustrate that TSVR methods are superior to SVR.Tedarikçi seçimi sorunu son zamanlarda literatürde oldukça ilgi görmektedir. Güncel literatür, yapay zeka tekniklerinin geleneksel istatistiksel yöntemlerle karşılaştırıldığında daha iyi bir performans sağladığını göstermektedir. Son zamanlarda, destek vektör makinesi, araştırmacılar tarafından çok daha fazla ilgi görse de, buna dayalı tedarikçi seçimi çalışmalarına pek sık rastlanmamaktadır. Bu çalışmada, tedarikçi kredi endeksini tahmin etmek amacıyla, destek vektör regresyon (DVR) ve ikiz destek vektör regresyon (İDVR) teknikleri kullanılmıştır. Pratikte, tedarikçi verisini içeren örneklemler sayıca oldukça yetersizdir. DVR ve İDVR daha küçük örneklemlerle analiz yapmaya uyarlanabilir. Tedarikçilerin belirlenmesinde DVR ve İDVR yöntemlerinin tahmin kesinlikleri karşılaştırılmıştır. Gerçek örnekler İDVR yönteminin DVR yöntemine kıyasla üstün olduğunu göstermektedir

    Destek Vektör Regresyon ve İkiz Destek Vektör Regresyon Yöntemi ile Tedarikçi Seçimi

    Get PDF
    Suppliers’ selection problem has attracted considerable research interest in recent years. Recent literature show that artificial intelligence techniques achieve better performance than traditional statistical methods. Recently, support vector machine has received much more attention from researchers, while studies on supplier selection based on it are few. In this paper, we applied the support vector regression (SVR) and twin support vector regression (TSVR) techniques to predict the supplier credit index. In practice, the suppliers’ samples are very insufficient. SVR and TSVR are adaptive to deal with small samples. The prediction accuracies for SVR and TSVR methods are compared to choose appropriate suppliers. The actual examples illustrate that TSVR methods are superior to SVR.Tedarikçi seçimi sorunu son zamanlarda literatürde oldukça ilgi görmektedir. Güncel literatür, yapay zeka tekniklerinin geleneksel istatistiksel yöntemlerle karşılaştırıldığında daha iyi bir performans sağladığını göstermektedir. Son zamanlarda, destek vektör makinesi, araştırmacılar tarafından çok daha fazla ilgi görse de, buna dayalı tedarikçi seçimi çalışmalarına pek sık rastlanmamaktadır. Bu çalışmada, tedarikçi kredi endeksini tahmin etmek amacıyla, destek vektör regresyon (DVR) ve ikiz destek vektör regresyon (İDVR) teknikleri kullanılmıştır. Pratikte, tedarikçi verisini içeren örneklemler sayıca oldukça yetersizdir. DVR ve İDVR daha küçük örneklemlerle analiz yapmaya uyarlanabilir. Tedarikçilerin belirlenmesinde DVR ve İDVR yöntemlerinin tahmin kesinlikleri karşılaştırılmıştır. Gerçek örnekler İDVR yönteminin DVR yöntemine kıyasla üstün olduğunu göstermektedir

    Supplier Selection and Relationship Management: An Application of Machine Learning Techniques

    Get PDF
    Managing supply chains is an extremely challenging task due to globalization, short product life cycle, and recent advancements in information technology. These changes result in the increasing importance of managing the relationship with suppliers. However, the supplier selection literature mainly focuses on selecting suppliers based on previous performance, environmental and social criteria and ignores supplier relationship management. Moreover, although the explosion of data and the capabilities of machine learning techniques in handling dynamic and fast changing environment show promising results in customer relationship management, especially in customer lifetime value, this area has been untouched in the upstream side of supply chains. This research is an attempt to address this gap by proposing a framework to predict supplier future value, by incorporating the contract history data, relationship value, and supply network properties. The proposed model is empirically tested for suppliers of public works and government services Canada. Methodology wise, this thesis demonstrates the application of machine learning techniques for supplier selection and developing effective strategies for managing relationships. Practically, the proposed framework equips supply chain managers with a proactive and forward-looking approach for managing supplier relationship

    Distributed analysis of vertically partitioned sensor measurements under communication constraints

    Get PDF
    Nowadays, large amounts of data are automatically generated by devices and sensors. They measure, for instance, parameters of production processes, environmental conditions of transported goods, energy consumption of smart homes, traffic volume, air pollution and water consumption, or pulse and blood pressure of individuals. The collection and transmission of data is enabled by electronics, software, sensors and network connectivity embedded into physical objects. The objects and infrastructure connecting such objects are called the Internet of Things (IoT). In 2010, already 12.5 billion devices were connected to the IoT, a number about twice as large as the world's population at that time. The IoT provides us with data about our physical environment, at a level of detail never known before in human history. Understanding such data creates opportunities to improve our way of living, learning, working, and entertaining. For instance, the information obtained from data analysis modules embedded into existing processes could help their optimization, leading to more sustainable systems which save resources in sectors such as manufacturing, logistics, energy and utilities, the public sector, or healthcare. IoT's inherent distributed nature, the resource constraints and dynamism of its networked participants, as well as the amounts and diverse types of data collected are challenging even the most advanced automated data analysis methods known today. Currently, there is a strong research focus on the centralization of all data in the cloud, processing it according to the paradigm of parallel high-performance computing. However, the resources of devices and sensors at the data generating side might not suffice to transmit all data. For instance, pervasive distributed systems such as wireless sensors networks are highly communication-constrained, as are streaming high throughput applications, or those where data masses are simply too huge to be sent over existing communication lines, like satellite connections. Hence, the IoT requires a new generation of distributed algorithms which are resource-aware and intelligently reduce the amount of data transmitted and processed throughout the analysis chain. This thesis deals with the distributed analysis of vertically partitioned sensor measurements under communication constraints, which is a particularly challenging scenario. Here, not observations are distributed over nodes, but their feature values. The learning of accurate prediction models may require the combination of information from different nodes, necessarily leading to communication. The main question is how to design communication-efficient algorithms for the scenario, while at the same time preserving sufficient accuracy. The first part of the thesis introduces fundamental concepts. An overview of the IoT and its many applications is given, with a special focus on data analysis, the vertically partitioned data scenario, and accompanying research questions. Then, basic notions of machine learning and data mining are introduced. A selection of existing distributed data mining approaches is presented and discussed in more detail. Distributed learning in the vertically partitioned data scenario is then motivated by a smart manufacturing case study. In a hot rolling mill, different machines assess parameters describing the processing of single steel blocks, whose quality should be predicted as early as possible, by analysis of distributed measurements. Each machine creates not single value series, but many of them. Their heterogeneity leads to challenging questions concerning the steps of preprocessing and finding a good representation for learning, for which solutions are proposed. Another problem is that quality information is not given for individual blocks, but charges of blocks. How can we nevertheless predict the quality of individual blocks? Time constraints lead to questions typical for the vertically partitioned data scenario. Which data should be analyzed locally, to match the constraints, and which should be sent to a central server? Learning from aggregated label information is a relatively novel problem in machine learning research. A new algorithm for the task is developed and evaluated, the Learning from Label Proportions by Clustering (LLPC) algorithm. The algorithm's performance is compared to three other state-of-the-art approaches, in terms of accuracy and running time. It can be shown that LLPC achieves results with lower running time, while accuracy is comparable to that of its competitors, or significantly higher. The proposed algorithm comes with many other benefits, like ease of implementation and a small memory footprint. For highly decentralized systems, the Training of Local Models from (Label) Counts (TLMC) algorithm is proposed. The method builds on LLPC, reducing communication by transferring only label counts for batches of observations between nodes. Feasibility of the approach is demonstrated by evaluating the algorithm's performance in the context of traffic flow prediction. It is shown that TLMC is much more communication-efficient than centralization of all data, but that accuracy can nevertheless compete with that of a centrally trained global model. Finally, a communication-efficient distributed algorithm for anomaly detection is proposed, the Vertically Distributed Core Vector Machine (VDCVM). It can be shown that the proposed algorithm communicates up to an order of magnitude less data during learning, in comparison to another state-of-the-art approach, or training a global model by the centralization of all data. Nevertheless, in many relevant cases, the VDCVM achieves similar or even higher accuracy on several controlled and benchmark datasets. A main result of the thesis is that communication-efficient learning is possible in cases where features from different nodes are conditionally independent, given the target value to be predicted. Most efficient are local models, which exchange label information between nodes. In comparison to consensus algorithms, which transmit labels repeatedly, TLMC sends labels only once between nodes. Communication could be even reduced further by learning from counts of labels. In the context of traffic flow prediction, the accuracy achieved is still sufficient in comparison to centralizing all data and training a global model. In the case of anomaly detection, similar results could be achieved by utilizing a sampling approach which draws only as many observations as needed to reach a (1+ε)-approximation of the minimum enclosing ball (MEB). The developed approaches have many applications in communication-constrained settings, in the sectors mentioned above. It has been shown that data can be reduced and learned from before it even enters the cloud. Decentralized processing might thus enable the analysis of big data masses, the more devices are getting connected to the IoT

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    Housing quality and lost (public) space in Croatia

    Get PDF
    IN ENGLISH: In the post-socialist period and within the current social transition context, urban and rural Croatia has, just like other transition countries, experienced many changes in the social structure and space. One example is the housing quality which is a replica of the situation in the Croatian society and has also undergone some major changes. Socially oriented housing construction co-financed by the state and the cities is in an unfavourable position compared to private housing construction. In the last twenty years the amount of the social housing construction has been only a minor part of the total contruction work in the country. For instance, out of nine newly planned residential housing developments in Zagreb, the capital city, only three have been completed and the work on the rest of them has stopped and is unlikely to continue. Private construction work prevails especially on the edge of the city and is characterised by high density housing. This type of housing construction doesn't benefit the majority of citizens in search of accommodation (price per square meter is too high, low-quality building). There is also a big problem of the community facilities (primary and secondary infrastructure, schools, kindergartens, playgrounds, green areas, sidewalks, public transport etc.). The existing globalisation-transition circumstances of the Croatian society corroborate the fact which experts of various profiles often point out: ignoring the process of (urban) planning will irreparably damage the space. The city transformation shows the absence of comprehensive urban planning which results in an ever increasing number of random buildings which do not fit in the surroundings. This leads up to yet another important issue – the shrinking and, in some cases, disappearance of public space which becomes the “lost space“. In recent years there has been a lot of building in the city core and on the edge which does not quite fit in the existing urban structure, image or the skyline of the city. The current situation in the process of planning can be characterized as a conflict and imbalance between the powerful actors (mostly political and economic) and less powerful actors (mostly professional and civil). The actors who have the political power and influence and the ones who possess the capital are forming an “alliance” between two important layers of the social structure. The lack of civil and professional actors, “lost spatial actors”, and therefore of civic aggregation is also present and that is also the cause of public space “disappearance” and undermined process of public participation. --------------- IN CROATIAN: U postsocijalističkom razdoblju i trenutnom tranzicijskom kontekstu urbana i ruralna Hrvatska su, kao i ostale tranzicijske zemlje, doživjele mnoge promjene u društvenoj strukturi i samom prostoru. Na primjeru kvalitete stanovanja kao replike stanja u hrvatskom društvu mogu se vidjeti značajne promjene. Društveno usmjerena stambena izgradnja sufinancirana od strane države i gradova je stoga rjeđa i u nepovoljnijoj je situaciji prema privatnoj stanogradnji. Zadnjih dvadeset godina udjel socijalne stambene gradnje je zanemariv u ukupnoj izgradnji na razini zemlje. Primjerice, od devet planiranih stambenih naselja izgrađenih po modelu POS-a u Zagrebu samo su tri i završena. Na ostalima je proces gradnje zastao i ne čini se da će se privesti kraju. Privatna je gradnje prisutnija, posebno na rubovima grada, a obilježava je visoka gustoća gradnje. Ovakav tip gradnje ne odgovara većini stanovnika koji su u procesu potražnje stambene nekretnine (visoka cijena kvadratnog metra, a slaba kvaliteta gradnje). Postoji također i problem nedostatne opremljenosti susjedstva (primarna i sekundarna infrastruktura, škole, vrtići, igrališta, zelene površine, pješačke staze, javni transport itd.). Navedene globalizacijsko-tranzicijske okolnosti hrvatskog društva potvrđuju ono što eksperti različitih profila ističu, a to je da će ignoriranje procesa (urbanog) planiranja nepovratno uništiti prostor gradova. Ovakve transformacije pokazuju nedostatak sustavnog urbanog planiranja što rezultira sve većim brojem zgrada koje se ne uklapaju u neposrednu okolinu. To nadalje dovodi do drugog važnog aspekta – smanjivanja i u nekim slučajevima, nestanka javnog prostora koji postaje „izgubljeni prostor“. Posljednjih je godina izgrađen velik broj zgrada, i u središtu i na rubovima grada, koje se ne uklapaju u postojeću urbanu strukturu, izgled ili vizuru grada. Ovakvu situaciju obilježavaju sukob i neravnoteža između moćnijih društvenih aktera (većinom političkih i ekonomskih) i onih manje moćnih (većinom profesionalnih i civilnih). Politički i ekonomski akteri se često povezuju u „savez“ dvaju najjačih u društvenoj strukturi. S druge strane nedostatak utjecaja civilnih i profesionalnih aktera kao „izgubljenih prostornih aktera“ dovodi do „nestanka“ javnih prostora te smanjenja važnosti procesa participacije (sudjelovanja javnosti)
    corecore