Tedarikçi seçimi sorunu son zamanlarda literatürde oldukça ilgi görmektedir. Güncel literatür, yapay zeka tekniklerinin geleneksel istatistiksel yöntemlerle karşılaştırıldığında daha iyi bir performans sağladığını göstermektedir. Son zamanlarda, destek vektör makinesi, araştırmacılar tarafından çok daha fazla ilgi görse de, buna dayalı tedarikçi seçimi çalışmalarına pek sık rastlanmamaktadır. Bu çalışmada, tedarikçi kredi endeksini tahmin etmek amacıyla, destek vektör regresyon (DVR) ve ikiz destek vektör regresyon (İDVR) teknikleri kullanılmıştır. Pratikte, tedarikçi verisini içeren örneklemler sayıca oldukça yetersizdir. DVR ve İDVR daha küçük örneklemlerle analiz yapmaya uyarlanabilir. Tedarikçilerin belirlenmesinde DVR ve İDVR yöntemlerinin tahmin kesinlikleri karşılaştırılmıştır. Gerçek örnekler İDVR yönteminin DVR yöntemine kıyasla üstün olduğunu göstermektedir.Suppliers’ selection problem has attracted considerable research interest in recent years. Recent literature show that artificial intelligence techniques achieve better performance than traditional statistical methods. Recently, support vector machine has received much more attention from researchers, while studies on supplier selection based on it are few. In this paper, we applied the support vector regression (SVR) and twin support vector regression (TSVR) techniques to predict the supplier credit index. In practice, the suppliers’ samples are very insufficient. SVR and TSVR are adaptive to deal with small samples. The prediction accuracies for SVR and TSVR methods are compared to choose appropriate suppliers. The actual examples illustrate that TSVR methods are superior to SVR