3 research outputs found

    QoS in FANET Business and Swarm Data

    Full text link
    This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks (FANET). Each drone has the ability to send and receive information (like a router); and can behave as a hierarchical node whit the intregration of three protocols: Multiprotocol Label Switch (MPLS), Fast Hierarchical AD Hoc Mobile (FHAM) and Internet Protocol version 6 (IPv6), in conclusion MPLS + FHAM + IPv6. The metrics analyzed in the FANET are: Delay, jitter, throughput, lost and sent packets/received. Testing process was carried out with swarms composed of 10, 20, 30 and 40 units; In this work, the stage with 40 droneswas analyzed showing registration processes, and sentmessages sequences between different drones that were part of the same swarm. A special analysis about the traffic between drones (end-to-end) was carried out, as well as the possible security flaws in each drone and the current status and future trends in real services. Regarding future trends, in a real environment, we took as a starting point,metrics results obtained in the simulation (positive according to the obtained results). These results gave us a clear vision of how the network will behave in a real environment with the aim to carry out the experiment on a physical level in the near future. This work also shows the experience quality from the service quality metrics obtained through a mathematical model. This quality of experience model will allow us to use it objectively in the agricultural sector, which is a great interest area and is where we are working with drones. Finally in this article we show our advances for a business model applied to the aforementioned agricultural sector, as well as the data analysis and services available to the end customer. These services available to the end customer have been classified into a basic, medium, advanced and plus level

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions
    corecore