9,317 research outputs found

    Safety-Critical Systems and Agile Development: A Mapping Study

    Full text link
    In the last decades, agile methods had a huge impact on how software is developed. In many cases, this has led to significant benefits, such as quality and speed of software deliveries to customers. However, safety-critical systems have widely been dismissed from benefiting from agile methods. Products that include safety critical aspects are therefore faced with a situation in which the development of safety-critical parts can significantly limit the potential speed-up through agile methods, for the full product, but also in the non-safety critical parts. For such products, the ability to develop safety-critical software in an agile way will generate a competitive advantage. In order to enable future research in this important area, we present in this paper a mapping of the current state of practice based on {a mixed method approach}. Starting from a workshop with experts from six large Swedish product development companies we develop a lens for our analysis. We then present a systematic mapping study on safety-critical systems and agile development through this lens in order to map potential benefits, challenges, and solution candidates for guiding future research.Comment: Accepted at Euromicro Conf. on Software Engineering and Advanced Applications 2018, Prague, Czech Republi

    COMPANIES ECONOMY IN CONTEXT OF THE ECONOMIC CRISIS

    Get PDF
    In this article I try to express components of the market economy which may affect an organization of the companies into a period whith decline and resignation reign in human activities. The economic crisis that is the a current world is the climax of financial turmoil which make integral part a normal legislative and the economic calculation which configures a demand and supply of goods.organizational arrangements; company; contracts; legislation; demand; supply; Microeconomics; economic calculation

    A method for tailoring the information content of a software process model

    Get PDF
    The framework is defined for a general method for selecting a necessary and sufficient subset of a general software life cycle's information products, to support new software development process. Procedures for characterizing problem domains in general and mapping to a tailored set of life cycle processes and products is presented. An overview of the method is shown using the following steps: (1) During the problem concept definition phase, perform standardized interviews and dialogs between developer and user, and between user and customer; (2) Generate a quality needs profile of the software to be developed, based on information gathered in step 1; (3) Translate the quality needs profile into a profile of quality criteria that must be met by the software to satisfy the quality needs; (4) Map the quality criteria to set of accepted processes and products for achieving each criterion; (5) Select the information products which match or support the accepted processes and product of step 4; and (6) Select the design methodology which produces the information products selected in step 5

    DATABASE DEVELOPMENT LIFE CYCLE

    Get PDF
    A software development life cycle model (SDLC) consists of a set of processes (planning, requirements, design, development, testing, installation and maintenance) defined to accomplish the task of developing a software application that is functionally correct and satisfies the user’s needs. These set of processes, when arranged in different orders, characterize different types of life cycles. When developing a database, the order of these tasks is very important to efficiently and correctly transform the user’s requirements into an operational database. These SDLCs are generally defined very broadly and are not specific for a particular type of application. In this paper the authors emphasize that there should be a SDLC that is specific to database applications. Database applications do not have the same characteristics as other software applications and thus a specific database development life cycle (DBDLC) is needed. A DBDLC should accommodate properties like scope restriction, progressive enhancement, incremental planning and pre-defined structure.Software Development, Database, DBMS, lifecycle model, traditional lifecycles

    Walking Through the Method Zoo: Does Higher Education Really Meet Software Industry Demands?

    Get PDF
    Software engineering educators are continually challenged by rapidly evolving concepts, technologies, and industry demands. Due to the omnipresence of software in a digitalized society, higher education institutions (HEIs) have to educate the students such that they learn how to learn, and that they are equipped with a profound basic knowledge and with latest knowledge about modern software and system development. Since industry demands change constantly, HEIs are challenged in meeting such current and future demands in a timely manner. This paper analyzes the current state of practice in software engineering education. Specifically, we want to compare contemporary education with industrial practice to understand if frameworks, methods and practices for software and system development taught at HEIs reflect industrial practice. For this, we conducted an online survey and collected information about 67 software engineering courses. Our findings show that development approaches taught at HEIs quite closely reflect industrial practice. We also found that the choice of what process to teach is sometimes driven by the wish to make a course successful. Especially when this happens for project courses, it could be beneficial to put more emphasis on building learning sequences with other courses

    Process Models and Distribution of Work in Offshoring Application Software Development

    Get PDF
    Common process models for the development of application software (AS) are examined as to how well they are suited for offshoring projects. The need for communication and interaction among onsite and offshore project stakeholders is identified as a critical success factor. Process models used by organizations providing offshoring services are discussed, and a generalized offshoring life cycle model is developed. A specific focus is set on the distribution of work between the organization that outsources AS development and the offshore organization that carries out the major share of the development work. Problems and challenges that have to be faced, making offshoring a difficult task, are discussed. --
    corecore