74 research outputs found

    Functionality-power-packaging considerations in context aware wearable systems

    Get PDF
    Wearable computing places tighter constraints on architecture design than traditional mobile computing. The architecture is described in terms of miniaturization, power-awareness, global low-power design and suitability for an application. In this article we present a new methodology based on three different system properties. Functionality, power and electronic Packaging metrics are proposed and evaluated to study different trade offs. We analyze the trade offs in different context recognition scenarios. The proof of concept case study is analyzed by studying (a) interaction with household appliances by a wrist worn device (acceleration, light sensors) (b) studying walking behavior with acceleration sensors, (c) computational task and (d) gesture recognition in a wood-workshop using the combination of accelerometer and microphone sensors. After analyzing the case study, we highlight the size aspect by electronic packaging for a given functionality and present the miniaturization trends for ‘autonomous sensor button

    Gamma-Ray Burst Polarimeter - GAP - aboard the Small Solar Power Sail Demonstrator IKAROS

    Full text link
    The small solar power sail demonstrator "IKAROS" is a Japanese engineering verification spacecraft launched by H-IIA rocket on May 21, 2010 at JAXA Tanegashima Space Center. IKAROS has a huge sail with 20 m in diameter which is made of thin polyimide membrane. This sail converts the solar radiation-pressure into the propulsion force of IKAROS and accelerates the spacecraft. The Gamma-Ray Burst Polarimeter (GAP) aboard IKAROS is the first polarimeter to observe the gamma-ray polarization of Gamma-Ray Bursts (GRBs) during the IKAROS cruising phase. GAP is a tinny detector of 3.8 kg in weight and 17 cm in size with an energy range between 50-300 keV. The GAP detector also plays a role of the interplanetary network (IPN) to determine the GRB direction. The detection principle of gamma-ray polarization is the anisotropy of the Compton scattering. GAP works as the GRB polarimeter with the full coincidence mode between the central plastic and the surrounding CsI detectors. GAP is the first instrument, devoted for the observation of gamma-ray polarization in the astronomical history. In this paper, we present the GAP detector and its ground and onboard calibrations.Comment: Submitted to Publications of the Astronomical Society of Japan (PASJ), 23 pages, 14 figure

    Embedded machine learning using microcontrollers in wearable and ambulatory systems for health and care applications: a review

    Get PDF
    The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system’s requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work addresses the gap in literature targeting the use of MCUs as edge inference devices for healthcare wearables. Thus, can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables

    Towards remote healthcare monitoring using accessible IoT technology: State-of-the-art, insights and experimental design

    Get PDF
    Healthcare studies are moving toward individualised measurement. There is need to move beyond supervised assessments in the laboratory/clinic. Longitudinal free-living assessment can provide a wealth of information on patient pathology and habitual behaviour, but cost and complexity of equipment have typically been a barrier. Lack of supervised conditions within free-living assessment means there is need to augment these studies with environmental analysis to provide context to individual measurements. This paper reviews low-cost and accessible Internet of Things (IoT) technologies with the aim of informing biomedical engineers of possibilities, workflows and limitations they present. In doing so, we evidence their use within healthcare research through literature and experimentation. As hardware becomes more affordable and feature rich, the cost of data magnifies. This can be limiting for biomedical engineers exploring low-cost solutions as data costs can make IoT approaches unscalable. IoT technologies can be exploited by biomedical engineers, but more research is needed before these technologies can become commonplace for clinicians and healthcare practitioners. It is hoped that the insights provided by this paper will better equip biomedical engineers to lead and monitor multi-disciplinary research investigations

    TinyML: Tools, Applications, Challenges, and Future Research Directions

    Full text link
    In recent years, Artificial Intelligence (AI) and Machine learning (ML) have gained significant interest from both, industry and academia. Notably, conventional ML techniques require enormous amounts of power to meet the desired accuracy, which has limited their use mainly to high-capability devices such as network nodes. However, with many advancements in technologies such as the Internet of Things (IoT) and edge computing, it is desirable to incorporate ML techniques into resource-constrained embedded devices for distributed and ubiquitous intelligence. This has motivated the emergence of the TinyML paradigm which is an embedded ML technique that enables ML applications on multiple cheap, resource- and power-constrained devices. However, during this transition towards appropriate implementation of the TinyML technology, multiple challenges such as processing capacity optimization, improved reliability, and maintenance of learning models' accuracy require timely solutions. In this article, various avenues available for TinyML implementation are reviewed. Firstly, a background of TinyML is provided, followed by detailed discussions on various tools supporting TinyML. Then, state-of-art applications of TinyML using advanced technologies are detailed. Lastly, various research challenges and future directions are identified.Comment: 12 pags, 3 tables, 4 figure

    A novel approach to sensor implementation for healthcare systems using internet of things

    Get PDF
    The Internet of Things is touching all spheres of life, be it in connecting cities together, making agricultural farms and health care smarter, predictable and more secure, and in industries it is set out to bring about changes that are similar to those of the industrial revolution that took place in the 19th and 20th century. It is estimated by pundits that in next 5 to 10 years, the Internet of Things will become a 50 billion dollar industry by itself, encompassing everything that it touches and goes upon. In order to get healthcare enabled into the IoT ecosystem, the sensors and the actuators related to it must be able to support the protocols that is required for the acquisition, processing and storing of data from the sensors to the IoT based infrastructure. Here, for a proposed model for a health care monitor using Internet of Things, the sensors characteristics, working principal, the protocol associated with it, its internal mechanism, and the results obtained when interfaced using a Raspberry Pi arediscussed, laying the framework for the future of the sensors that need to be adapted to stay relevant in the future, when IoT transitions from concept to reality

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available
    • …
    corecore