6 research outputs found

    An Image-Based Real-Time Georeferencing Scheme for a UAV Based on a New Angular Parametrization

    Get PDF
    Simultaneous localization and mapping (SLAM) of a monocular projective camera installed on an unmanned aerial vehicle (UAV) is a challenging task in photogrammetry, computer vision, and robotics. This paper presents a novel real-time monocular SLAM solution for UAV applications. It is based on two steps: consecutive construction of the UAV path, and adjacent strip connection. Consecutive construction rapidly estimates the UAV path by sequentially connecting incoming images to a network of connected images. A multilevel pyramid matching is proposed for this step that contains a sub-window matching using high-resolution images. The sub-window matching increases the frequency of tie points by propagating locations of matched sub-windows that leads to a list of high-frequency tie points while keeping the execution time relatively low. A sparse bundle block adjustment (BBA) is employed to optimize the initial path by considering nuisance parameters. System calibration parameters with respect to global navigation satellite system (GNSS) and inertial navigation system (INS) are optionally considered in the BBA model for direct georeferencing. Ground control points and checkpoints are optionally included in the model for georeferencing and quality control. Adjacent strip connection is enabled by an overlap analysis to further improve connectivity of local networks. A novel angular parametrization based on spherical rotation coordinate system is presented to address the gimbal lock singularity of BBA. Our results suggest that the proposed scheme is a precise real-time monocular SLAM solution for a UAV.Peer reviewe

    Integration of Low-Cost GNSS and Monocular Cameras for Simultaneous Localization and Mapping

    No full text
    Low-cost Global Navigation Satellite System (GNSS) receivers and monocular cameras are widely used in daily activities. The complementary nature of these two devices is ideal for outdoor navigation. In this paper, we investigate the integration of GNSS and monocular camera measurements in a simultaneous localization and mapping system. The proposed system first aligns the coordinates between two sensors. Subsequently, the measurements are fused by an optimization-based scheme. Our system can function in real-time and obtain the absolute position, scale, and attitude of the vehicle. It achieves a high accuracy without a preset map and also has the capability to work with a preset map. The system can easily be extended to create other forms of maps or for other types of cameras. Experimental results on a popular public dataset are presented to validate the performance of the proposed system

    Integration of Low-Cost GNSS and Monocular Cameras for Simultaneous Localization and Mapping

    No full text
    Low-cost Global Navigation Satellite System (GNSS) receivers and monocular cameras are widely used in daily activities. The complementary nature of these two devices is ideal for outdoor navigation. In this paper, we investigate the integration of GNSS and monocular camera measurements in a simultaneous localization and mapping system. The proposed system first aligns the coordinates between two sensors. Subsequently, the measurements are fused by an optimization-based scheme. Our system can function in real-time and obtain the absolute position, scale, and attitude of the vehicle. It achieves a high accuracy without a preset map and also has the capability to work with a preset map. The system can easily be extended to create other forms of maps or for other types of cameras. Experimental results on a popular public dataset are presented to validate the performance of the proposed system
    corecore