2 research outputs found

    Words or numbers? Communicating probability in intelligence analysis

    Get PDF
    Intelligence analysis is fundamentally an exercise in expert judgment made under conditions of uncertainty. These judgments are used to inform consequential decisions. Following the major intelligence failure that led to the 2003 war in Iraq, intelligence organizations implemented policies for communicating probability in their assessments. Virtually all chose to convey probability using standardized linguistic lexicons in which an ordered set of select probability terms (e.g., highly likely) is associated with numeric ranges (e.g., 80-90%). We review the benefits and drawbacks of this approach, drawing on psychological research on probability communication and studies that have examined the effectiveness of standardized lexicons. We further discuss how numeric probabilities can overcome many of the shortcomings of linguistic probabilities. Numeric probabilities are not without drawbacks (e.g., they are more difficult to elicit and may be misunderstood by receivers with poor numeracy). However, these drawbacks can be ameliorated with training and practice, whereas the pitfalls of linguistic probabilities are endemic to the approach. We propose that, on balance, the benefits of using numeric probabilities outweigh their drawbacks. Given the enormous costs associated with intelligence failure, the intelligence community should reconsider its reliance on using linguistic probabilities to convey probability in intelligence assessments. Our discussion also has implications for probability communication in other domains such as climate science

    Arithmetic computation with probability words and numbers

    Get PDF
    Probability information is regularly communicated to experts who must fuse multiple estimates to support decision-making. Such information is often communicated verbally (e.g., “likely”) rather than with precise numeric (point) values (e.g., “.75”), yet people are not taught to perform arithmetic on verbal probabilities. We hypothesized that the accuracy and logical coherence of averaging and multiplying probabilities will be poorer when individuals receive probability information in verbal rather than numerical point format. In four experiments (N = 213, 201, 26, and 343, respectively), we manipulated probability communication format between-subjects. Participants averaged and multiplied sets of four probabilities. Across experiments, arithmetic accuracy and coherence was significantly better with point than with verbal probabilities. These findings generalized between expert (intelligence analysts) and non-expert samples and when controlling for calculator use. Experiment 4 revealed an important qualification: whereas accuracy and coherence were better among participants presented with point probabilities than with verbal probabilities, imprecise numeric probability ranges (e.g., “.70 to .80”) afforded no computational advantage over verbal probabilities. Experiment 4 also revealed that the advantage of the point over the verbal format is partially mediated by strategy use. Participants presented with point estimates are more likely to use mental computation than guesswork, and mental computation was found to be associated with better accuracy. Our findings suggest that where computation is important, probability information should be communicated to end users with precise numeric probabilities
    corecore