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Abstract 
 

Probability information is regularly communicated to experts who must fuse multiple estimates 
to support decision-making. Such information is often communicated verbally (e.g., “likely”) 
rather than with precise numeric (point) values (e.g., “.75”), yet people are not taught to perform 
arithmetic on verbal probabilities. We hypothesized that the accuracy and logical coherence of 
averaging and multiplying probabilities will be poorer when individuals receive probability 
information in verbal rather than numerical point format. In four experiments (N = 213, 201, 26, 
and 343, respectively), we manipulated probability communication format between-subjects. 
Participants averaged and multiplied sets of four probabilities. Across experiments, arithmetic 
accuracy and coherence was significantly better with point than with verbal probabilities. These 
findings generalized between expert (intelligence analysts) and non-expert samples and when 
controlling for calculator use. Experiment 4 revealed an important qualification: whereas 
accuracy and coherence were better among participants presented with point probabilities than 
with verbal probabilities, imprecise numeric probability ranges (e.g., “.70 to .80”) afforded no 
computational advantage over verbal probabilities. Experiment 4 also revealed that the advantage 
of the point over the verbal format is partially mediated by strategy use. Participants presented 
with point estimates are more likely to use mental computation than guesswork, and mental 
computation was found to be associated with better accuracy. Our findings suggest that where 
computation is important, probability information should be communicated to end users with 
precise numeric probabilities.  
 
Keywords: verbal probability, numeric probability, arithmetic, accuracy, coherence, uncertainty 
communication 
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Experts are often called on to make probability judgments that support others’ decision-making. 
For instance, physicians communicate the probability of treatment benefits and harms to patients 
(Wiles, Duffy, & Neill, 2019). Climate scientists estimate and communicate the probability of 
climate-change factors to policymakers and the public (Budescu, Broomell, & Por, 2009 ). And, 
intelligence analysts assess the probability of alternative futures to characterize uncertainty for 
policymakers and military decision-makers (Ho, Budescu, Dhami, & Mandel, 2015; Mandel & 
Barnes, 2018). In these and other areas (e.g., Morgan, 1998), experts typically assess and 
communicate probabilities with words such as “likely” rather than numeric quantifiers such as 
“75% chance”. This is true even in stereotypically quantitative professions such as accounting 
(Kolesnika, Silska-Gembka, & Gierusz, 2019), and  is consistent with the preference of 
communication senders who tend to favor the use of verbal over numeric probabilities (Erev & 
Cohen, 1990; Juanchich & Sirota, 2020; Olson & Budescu, 1997; Wallsten, Budescu, Zwick, & 
Kemp, 1993).  
 
However, the fact that verbal probabilities often serve as inputs to others’ judgments or decisions 
means that it is important to investigate how these probabilities are understood and used. In 
many cases, judgments and decisions that rely on earlier probability estimates require some form 
of arithmetic estimation or computation. For instance, a commander might receive multiple 
probability estimates from different intelligence sources or advisors and have to fuse them into 
an average estimate in order to decide on whether to undertake a high-risk operation, such as in 
the case of President Obama deciding on the military operation to capture or kill Osama bin 
Laden (Friedman & Zeckhauser, 2015). In such cases, the decision-maker must be able to 
estimate the average of the individual probability estimates received. As another example, a risk 
analyst might receive intelligence on the probabilities assigned to independent, necessary 
conditions that are judged to be jointly sufficient to yield a particular type of threat being 
monitored (e.g., a terrorist attack in a given location and timeframe). The analyst should ideally 
be able to multiply those values to determine the conjunctive probability of the threat. 
Conversely, the failure to correctly estimate the conjunctive probability of safety underlies many 
technological disasters (Perrow, 1984).   

 
The requirement to perform arithmetic operations, such as averaging or multiplication, on verbal 
probabilities poses challenges because such probabilities have vague meanings that are poorly 
captured by precise numeric values. Although such vagueness can be represented by membership 
functions over the [0, 1] probability interval (Wallsten, Budescu, Rapoport, Zwick, & Forsyth, 
1986; Zadeh, 1975), this does not offer a clear path to arithmetic computation in the real-world 
contexts described above. This is especially so because such representations involve detailed 
elicitations that are technically infeasible in many organizational contexts, such as national 
security intelligence. Furthermore, research has documented multiple violations of logical 
constraints on the integration of verbal probabilities (Budescu, Zwick, Wallsten, & Erev, 1990; 
Zwick, Budescu, & Wallsten, 1988). There is also large variability in the interpretation of verbal 
probabilities that are translated to numeric equivalents (e.g., Beyth-Marom, 1982; Budescu & 
Wallsten, 1990; Dhami & Wallsten, 2005; Lichtenstein & Newman, 1967). Such variability 
implies that even if verbal probabilities can be operated on arithmetically, the same probability 
information may be interpreted differently by different judges and even by the same judges 
across time, resulting in variability in the computed values as well. In collaborative and advisory 
decision-making situations, such variability translates into unreliability, which can obscure the 
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informational bases for sound judgment. For instance, Wiles et al. (2019) found that patients 
assigned significantly higher probability equivalents to verbal probability expressions used in the 
context of communicating about major peri-operative complications than did clinicians.  
 
Research has also shown that participants rate verbal probabilities as conveying  information 
about the specific degree of probability less clearly than numeric probabilities (Collins & 
Mandel, 2019). Probability information received that is unclear in terms of its degree may have 
deleterious consequences for receivers’ subsequent computations. Perhaps this is why some 
studies have found numeric probabilities to yield more accurate and reliable judgments than 
verbal probabilities (Budescu, Weinberg, & Wallsten, 1988; Rapoport, Wallsten, Erev, & Cohen, 
1990; but for studies showing comparable accuracy in diagnostic judgment using verbal and 
numeric probabilities, see Meder & Mayrhofer, 2017).  

 
The Present Research 
 
In the present research, we compared individuals’ abilities to perform arithmetic operations (i.e., 
averaging and multiplication) on sets of probabilities that were either received verbally or 
numerically. This has not been the focus of earlier studies comparing probability formats on 
accuracy (e.g., Budescu et al., 1988; Rapoport et al., 1990). We chose these two operations 
because, as noted earlier, they are commonly required in a wide range of practical judgment and 
decision-making contexts.1 To the best of our knowledge, no study has examined the effect of 
probability communication format on people’s abilities to perform arithmetic calculations such 
as these. Children typically learn to perform arithmetic operations on numbers rather than on 
linguistic quantifiers, and this tendency continues in adulthood. Therefore, we expected that 
individuals would be less adequately prepared to arithmetically combine verbal compared to 
numeric probabilities. Specifically, we hypothesized that if individuals must compute averages 
or products from multiple probability estimates they would be less accurate when dealing with 
verbal probabilities than with numeric probabilities. We tested this numeric superiority 
hypothesis in four experiments.2 In Experiments 1-3, we compared participants’ ability to 
average and/or multiply verbal and precise numeric probabilities. In Experiment 4, we compared 
participants’ ability to perform these computations with either verbal, precise numeric, or 
imprecise numeric-range probabilities. In Experiments 1, 2, and 4, we used large crowd-sourced 
samples, whereas in Experiment 3 we tested the numeric superiority hypothesis on a smaller 
sample of professional intelligence analysts, who are routinely required to work with probability 
estimates.  
 
Furthermore, we examined whether there was a numeric superiority effect on the coherence of 
arithmetic responses. Wallsten, Budescu, and Zwick (1993) compared the additivity of 
probability judgments (i.e., the extent to which the sum of probabilities assigned to 
complementary events, x and ¬x, approach their logically constrained value of 1) and found little 

 

1Although we anticipated that participants would be more accurate when averaging than when 
multiplying, this was not a focus of the research. 
2Materials and data sets for all experiments are available at https://osf.io/5dwh8/. 
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difference between numeric and verbal probability formats. However, participants, on average, 
gave additive probability estimates in both formats. Therefore, their experiment was not sensitive 
enough to assess which format may be better in situations where incoherence is likely to flourish. 
In the present research, participants were judged to be coherent if they respected the following 
normative principles: For averaging, the average of a set of values cannot be greater than the 
highest value in the set and it cannot be less than the lowest set value: 
 

p̂ ³≤ min(pi) Ç p̂ ≤ max(pi),      (1) 
 
where p̂ is the participant’s response and p is the true response. For multiplication, the product of 
a set of probability values cannot be greater than the lowest set value:  

 
p̂ £ min(pi).      (2) 

 
Violations of these coherence principles imply inaccuracy. However, inaccuracy does not 
necessarily imply such violations. For instance, judging the mean of .45 and .55 to be .53 is 
inaccurate but not in violation of the coherence criteria used here. As this example illustrates, the 
coherence violations examined in the present research not only imply inaccuracy, they imply an 
extreme degree of it. For instance, in the previous example, an incoherent participant would have 
to estimate a mean probability that was either less than .45 or greater than .55.  
 
Coherence violations do not merely measure the magnitude of quantitative inaccuracy, they can 
also indicate that an individual lacks an appropriate mental representation of the task  or schema 
for solving it (Mandel, 2008). Performing arithmetic operations on precise numeric values is 
something most individuals are taught to do at an early age. In contrast, even if individuals are 
periodically called on to arithmetically fuse verbal probability estimates to reach a decision, we 
hypothesize that their understanding of the process for doing so would be relatively aschematic, 
perhaps representing a full or partial breakdown in task construal (Clausner & Croft, 1999; 
Langacker, 1987). In other words, individuals may struggle or entirely fail to map verbal 
probabilities as inputs to a schema for performing arithmetic. If so, the asymmetry in 
schematicity for arithmetically processing verbal and numeric probabilities might be evident in 
the correlations between computational performance measures (i.e., accuracy and coherence), on 
the one hand, and individual differences in numeracy, on the other hand. Higher levels of 
numeracy (i.e., an individual’s ability to perform basic mathematical operations required for 
statistical literacy in daily life) facilitate probability assessment and improve the interpretation of 
numerical data (Lipkus & Peters, 2009). We hypothesized that numeracy will correlate more 
strongly with accuracy and coherence among individuals presented with numeric probabilities 
than with those presented with verbal probability. We refer to this as the differential schematicity 
hypothesis.  
 

Experiment 1 
 
The principal aim of Experiment 1 was to test the numeric superiority hypothesis that 
participants will be more accurate and coherent in averaging and multiplying probabilities if the 
values they received were expressed with precise numeric probabilities rather than with verbal 
probabilities. We tested this hypothesis by manipulating probability format between subjects and 
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presenting participants with two sets of four probabilities. For each set, participants were asked 
to average and multiply the probabilities and we measured their accuracy and coherence.  
 
In addition to numeracy, which was used to test the differential schematicity hypothesis, we also 
collected data on participants’ verbal reasoning and actively open-minded thinking (AOT). 
Verbal reasoning skill, which measures abstract analogical reasoning abilities using language, 
correlates with IQ measures (Bilker, Wierzbicki, Brensinger, Gur, & Gur, 2014). AOT, which 
assesses an individual’s willingness to evaluate evidence contrary to their beliefs as well as 
openness to alternative perspectives (Baron, Scott, Fincher, & Metz, 2015), is positively 
associated with accuracy in probabilistic judgment tasks (Haran, Ritov, & Mellers, 2013) and 
negatively associated with certain cognitive biases that violate coherence principles (Toplak, 
West, & Stanovich, 2017). We used these measures, along with numeracy, as statistical control 
variables in our primary analyses. 
 
Method 

 
Participants  

 
Participants (58% male) between the ages of 18 and 60 (M = 44.56, SD = 11.30) were recruited 
using the online crowdsourcing service, Qualtrics Panels. They were required to have English as 
their first language and were sampled from Canada or the US. Participants were prohibited from 
completing the experiment on a smartphone. Participants who did not pass the instructional 
manipulation check, a one-item test designed to identify participants who are not attending 
carefully to instructions (Oppenheimer, Meyvis, & Davidenko, 2009), were also screened out of 
the experiment. The final sample was comprised of 213 participants.  

 
Design  

 
Experiment 1 used a 2 (Format: numeric, verbal) ´ 2 (Operation: averaging, multiplication) 
mixed factorial design with operation as a repeated measure. Participants in the verbal condition 
were given two sets of verbal probabilities. Participants in the numeric condition were given two 
sets of numeric probabilities that corresponded with the numeric interpretation of the verbal 
probabilities. Within each set, participants were asked to provide the arithmetic average and the 
product of the elements in a set.  
 
The dependent variable for tests of accuracy was the standardized absolute error (SAE) between 
the participant’s response, p̂, and the true response, p:  

SAE = |p̂ - p|/max[p, (1 – p)]. 

In the analyses that follow, mean values of SAE are denoted as MSAE. We used MSAE rather 
than mean absolute error (MAE) to control for possible differences in the extremity of truth-
values, p, due to the different bases for accessing these values (for similar use of standardized 
error scores, see Fan, Budescu, Mandel, & Himmelstein, 2019). Specifically, in the numeric 
condition, the correct response was based on the means and products of the numeric values in the 
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two sets. In the verbal condition, we used participants’ own numeric equivalents of the verbal 
probabilities to compute the correct values.  

The dependent variable for tests of coherence was the number of incoherent responses across the 
two sets and within arithmetic operation. Thus, the measure ranged from 0 (coherent on both 
Sets 1 and 2) to 2 (incoherent on both sets). We calculated this incoherence measure separately 
for responses to the averaging task and to the multiplication task using the two criteria described 
in Equations 1 and 2.  

Procedure 
 

Participants completed the experiment as part of three brief studies run online in randomized 
order. The other studies examined the effect of probability format on the perceived credibility of 
a hypothetical forecaster (which constitutes part of the data analyzed in Collins & Mandel, 2019) 
and the effect of probability format on the interpretation of probabilities in statements (which 
constitutes part of the data analyzed in Mandel & Irwin, 2020a).   
 
The verbal condition of Experiment 1 was run first. Participants in this condition provided 
numeric-probability equivalents for the verbal terms in the two sets after completing the 
arithmetic task. We ran the verbal condition first because the median values of the numeric 
equivalents that participants provided, rounded to the nearest 5% interval, were used as the 
numeric-probability set values in the numeric condition that was subsequently run. The Qualtrics 
Panels sampling system was configured such that participants in the verbal condition were 
excluded from participating in the (subsequently run) numeric condition.  
 
Participants performed arithmetic operations on two sets of four probabilities in succession. In 
the verbal condition, Sets 1 and 2 comprised the terms {highly likely, unlikely, almost certain, 
and likely} and {unlikely, highly likely, remote chance, and highly unlikely}, respectively. In the 
numeric condition, Sets 1 and 2 comprised the corresponding values {0.75, 0.25, 0.80, and 0.65} 
and {0.25, 0.75, 0.25, and 0.20}, respectively. For each set, participants were first asked what the 
arithmetic average (i.e., the mean value) of the values or terms were, followed by what their 
product was. Responses were provided on a slider scale ranging from 0 to 1 with .01 increments. 
The initial position of the slider was set to 0, and the value of the scale was visible as the slider 
was moved along the scale.    
 
As mentioned earlier, participants in the verbal condition were also asked to indicate the best 
numeric-probability equivalent for each verbal probability in Set 1 using the same slider scale. 
Hereafter, for the sake of simplicity, we refer to the process of judging the equivalents of 
probabilities in one format to an alternative format as translation. The translation process was 
then repeated for Set 2.  
 
As noted earlier, these translation values were used to establish the corresponding set values in 
the numeric condition. Note that Sets 1 and 2 in the verbal condition had two probability terms in 
common (namely, highly likely and unlikely). The mean absolute distance (MAD) between the 
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best numeric-probability equivalents of these terms (with MAD further averaged across the two 
terms) served as a measure of intra-individual reliability.3  In addition to serving as measure of 
reliability, our calculation of MAD permitted a test of whether participants’ accuracy in the 
verbal condition might have been influenced by the reliability of their verbal-to-numeric 
translations.  
 
After the experimental tasks, participants completed measures of numeracy, verbal reasoning 
skill, and AOT. Numeracy was measured using eight questions from Lipkus, Samsa, and Rimer’s 
(2001) numeracy scale and two questions from the Berlin Numeracy Test (Cokely, Galesic, 
Schulz, Ghazal, & Garcia-Retamero, 2012). The verbal-skills test comprised eight verbal-
analogy questions drawn from the 29-item Penn Verbal Reasoning Test (PVRT) (Bilker et al., 
2014). Finally, we used the eight-item AOT scale used in Baron et al. (2015). These measures 
were used as covariates in analyses of covariance and used to test the hypothesis that accuracy 
and coherence are more strongly related to these variables when participants are presented with 
numeric rather than verbal probabilities.  
 
Results  
 
Accuracy 
 
We examined MSAE in a two-way (Format ´ Operation) mixed analysis of covariance 
(ANCOVA) with numeracy, PVRT, and AOT as covariates and operation as a repeated measure. 
As Table 1 shows, the main effects of format and operation were significant and the interaction 
between these factors was not. Figure 1 shows hybrid box-and-whisker and error plots for each 
condition in the two-way model. The box-and-whisker plots use sample data and the error plots 
use estimated marginal means from the ANCOVA model (this also applies to subsequent 
figures). Figure 1 shows a numeric superiority effect for both tasks; that is, MSAE was lower in 
the numeric condition than in the verbal condition. Also, MSAE was lower for the averaging task 
than for the multiplication task.  
 
Next, we tested the differential schematicity hypothesis. Given that MSAE for averaging and 
multiplication tasks were highly correlated (r[211] = .46, p < .001), we averaged these measures. 
Numeracy was significantly correlated with MSAE in the numeric condition (r[103] = –.41, p < 
.001) but numeracy and MSAE were not significantly correlated in the verbal condition (r[106] = 
–.13, p = .197).4 In support of the differential schematicity hypothesis, the difference between 
these correlations was significant, z = 2.19, one-tailed p = .014.  
 

 

3In Experiments 1-4, there were also questions that asked participants to re-compute arithmetic 
results with the translated values. However, in hindsight, we did not judge these questions to 
have sufficient probative value and we do not report on them. 
4This difference in correlational strength across format was also evident if the averaging and 
multiplication tasks are analyzed separately. In the numeric condition, rs = –.45 and –.32 and in 
the verbal condition, rs = –.10 and –.11 for averaging and multiplication tasks, respectively.  
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Finally, recall that to gauge intra-individual unreliability in the interpretation of verbal 
probabilities, we calculated MAD between the two terms (i.e., unlikely and highly likely) that 
appeared in both Sets 1 and 2. The mean of the two MAD measures was significantly greater 
than zero and yielded a large effect size, M = 0.14, SD = 0.17, one-sample t(107) = 8.52, p < 
.001, Cohen’s d = 0.82. To examine whether inaccuracy among participants in the verbal 
condition was related to their reliability in mapping verbal probabilities onto numeric 
probabilities, we examined the correlation between MAD and MSAE. The correlation was small 
and nonsignificant, r(106) = .13, p = .19.  
 
Coherence 
 
We examined incoherence scores in a two-way (Format ´ Operation) ANCOVA with numeracy, 
PVRT, and AOT as covariates. As Table 2 shows, the main effects of format and operation and 
the interaction effect were significant. Demonstrating a numeric superiority effect, responses 
were less incoherent in the numeric condition (M = 0.62, SE = 0.047) than in the verbal condition 
(M = 0.99, SE = 0.046). Also, consistent with the analysis of accuracy, incoherence was lower 
for averaging (M = 0.31, SE = 0.037) than for multiplication (M = 1.30, SE = 0.054). The simple 
effect of format was significant at both levels of operation, but the effect was stronger for 
multiplication than for averaging. For multiplication, incoherence in the numeric condition (M = 
1.03, SE = 0.079) was significantly less than in the verbal condition (M = 1.56, SE = 0.077), F(1, 
208) = 22.07, p < .001, hp2 = .096. Likewise, for averaging, incoherence in the numeric condition 
(M = 0.21, SE = 0.054) was significantly less than in the verbal condition (M = 0.42, SE = 
0.053), F(1, 208) = 7.05, p < .009, hp2 = .033. 
 
Incoherence scores for averaging and multiplication tasks showed a significant but small 
correlation (r[211] = .14, p = .037), in contrast to the large correlation observed in the 
corresponding accuracy analysis. To be prudent (and under the assumption that averaging should 
not be undertaken for correlations less than a medium effect of r = .3), we examined these scores 
separately for averaging and multiplication tasks in order to test the differential schematicity 
hypothesis. For the averaging task, numeracy was significantly correlated with coherence in the 
numeric condition (r[103] = –.39, p < .001) and in the verbal condition (r[106] = –.33, p = .001). 
Contrary to the differential schematicity hypothesis, the difference between these correlations 
was not statistically significant, z = 0.50, one-tailed p = .31. For the multiplication task, 
numeracy was significantly correlated with coherence in the numeric condition (r[103] = –.42, p 
< .001) but not in the verbal condition (r[106] = –.09, p = .35). In support of the differential 
schematicity hypothesis, there was a significant difference between these correlations, z = 2.57, 
one-tailed p = .005. 
 
Discussion 
 
The findings of Experiment 1 support the numeric superiority hypothesis. Participants were more 
accurate at averaging and multiplying probabilities when they were presented numerically as 
point estimates rather than verbally. Experiment 1 further demonstrated that participants who 
were required to average and multiply probabilities were less likely to do so coherently when 
they received verbal probabilities than when they received numeric probabilities. There was also 
partial support for the differential schematicity hypothesis. As the hypothesis predicts, accuracy 
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was significantly more strongly related to numeracy when the information received was in the 
numeric rather than verbal format. Similarly, numeracy was significantly more strongly related 
to coherence in the numeric than verbal format. However, this difference was not statistically 
significant for the averaging task. Given that participants found averaging easier than 
multiplication, it may have provided a weak test of the differential schematicity hypothesis. 
Finally, we found that participants presented with verbal probabilities were highly unreliable in 
their mapping of probability terms to numeric equivalents, although such unreliability did not 
correlate with accuracy.   
 
While the findings of Experiment 1 are informative, the experiment is also limited by the fact 
that the multiplication task always followed the averaging task. Therefore, it is unclear whether 
effects of operation are due to the arithmetic operation per se or to carryover effects.  
Accordingly, in Experiment 2, we manipulated the arithmetic operations in a between-subjects 
design and examined the replicability of the findings in Experiment 1.  
 

Experiment 2 
 
As noted, the aim of Experiment 2 was to replicate the findings that arithmetic accuracy and 
coherence were greater when participants receive precise numeric probabilities rather than verbal 
probabilities as inputs. Unlike Experiment 1, which presented averaging and multiplication tasks 
to participants in a fixed order, Experiment 2 independently manipulated both format and 
operation in a between-subjects design.   
 
Method 
 
Participants  
 
Experiment 2 was administered to participants (47.8% male) between the ages of 18 and 60 (M = 
40.64, SD = 10.84) using Qualtrics Panels. We used the same inclusion and exclusion criteria as 
in Experiment 1. The final sample was comprised of 201 participants.  
 
Design  
 
Experiment 2 used a 2 (Format: numeric, verbal) ´ 2 (Operation: averaging, multiplication) 
between-subjects design. The dependent variables were the same as in Experiment 1.  
 
Procedure  
 
The procedure followed that of Experiment 1 except for three changes. First, because we used 
the same sets as in Experiment 1, there was no need to run the verbal condition first; that is, we 
used the same equivalence values established in Experiment 1 and randomly assigned 
participants to conditions. Second, participants gave only one type of arithmetic response 
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because operation was manipulated between-subjects. Third, the wording of the arithmetic 
questions was simplified (for precise changes, see https://osf.io/5dwh8/).5   
 
Results  
 
Accuracy 
 
We examined MSAE in a two-way (Format ´ Operation) factorial ANCOVA controlling for 
numeracy, PVRT, and AOT as in Experiment 1.  As Table 3 shows, the main effects of format 
and operation were significant, as was the interaction effect (see Figure 2). Although it is evident 
that the numeric superiority effect was stronger in the multiplication condition than in the 
averaging condition, simple-effect tests showed that the effect of format was significant in each 
operation condition: for averaging, F(1, 100) = 11.14, p = .001, hp2 = .10; for multiplication, F(1, 
91) = 20.12, p < .001, hp2 = .18.  
 
Next, we examined support for the differential schematicity hypothesis. Numeracy was 
significantly correlated with MSAE in the numeric condition (r[91] = –.45, p < .001) but not in 
the verbal condition (r[106] = –.04, p = .65). In support of the differential schematicity 
hypothesis and consistent with the findings of Experiment 1, these correlations were significantly 
different, z = 3.10, one-tailed p = .001.  
 
Finally, we calculated MAD between the two pairs of common verbal probability terms that 
appeared in Sets 1 and 2 in the verbal condition. As in Experiment 1, MAD was significantly 
greater than zero, M = 0.12, SD = 0.17, one-sample t(107) = 7.58, p < .001, Cohen’s d = 0.71. 
Also consistent with the findings of Experiment 1, the correlation between MAD and MSAE was  
small and non-significant, r(106) = .12, p = .23.  
 
Coherence 
 
We examined incoherence scores in a two-way (Format ´ Operation) factorial ANCOVA with 
numeracy, PVRT, and AOT as covariates. As Table 4 shows, the main effects of format and 
operation and the interaction effect were significant. Demonstrating a numeric superiority effect, 
responses were less incoherent in the numeric condition (M = 0.50, SE = 0.065) than in the 
verbal condition (M = 1.17, SE = 0.060). Also, consistent with our accuracy analysis and the 
results of Experiment 1, incoherence was lower for averaging (M = 0.36, SE = 0.061) than for 
multiplication (M = 1.31, SE = 0.064). The simple effect of format was significant at both levels 
of operation, but the effect was stronger for multiplication than for averaging. For multiplication, 
incoherence in the numeric condition (M = 0.84, SE = 0.102) was significantly less than in the 
verbal condition (M = 1.78, SE = 0.088), F(1, 91) = 48.11, p < .001, hp2 = .346. Likewise, for 
averaging, incoherence in the numeric condition (M = 0.21, SE = 0.054) was significantly less 
than in the verbal condition (M = 0.42, SE = 0.053), F(1, 100) = 15.59, p < .001, hp2 = .135. 

 

5Responses to the arithmetic questions that followed the “translation” task were also altered, but 
as noted earlier, we do not analyze responses to those questions.  
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In support of the differential schematicity hypothesis, numeracy was significantly correlated with 
incoherence in the numeric condition (r[91] = –.42, p < .001) but numeracy and incoherence 
were not significantly correlated in the verbal condition (r[106] = –.14, p = .161). The difference 
between these correlations was statistically significant, z = 2.14, one-tailed p = .016. 
 
Discussion 
 
Experiment 2 replicated the key findings of Experiment 1. Specifically, participants were more 
accurate and coherent after receiving precise numeric probabilities than following receipt of 
verbal probabilities. These numeric superiority effects were evident for both averaging and 
multiplication tasks. Moreover, replicating Experiment 1, the accuracy of participants presented 
with verbal probabilities was not significantly related to the reliability with which participants 
assigned numeric probability equivalents to the two common verbal probability terms in Sets 1 
and 2, although substantial unreliability was once again observed. Finally, the differential 
schematicity hypothesis was strongly supported in Experiment 2. As the hypothesis predicts, 
both accuracy and coherence were significantly more strongly related to numeracy when 
probabilities were presented numerically rather than verbally.  
 

Experiment 3 
 

Whereas Experiments 1 and 2 found support for the numeric superiority hypothesis using 
participants recruited online, Experiment 3 examined whether comparable effects are replicable 
among a sample of practicing intelligence analysts. In addition to the shift from a non-expert to 
expert sample, we also explicitly instructed participants not to use a calculator, which had not 
been explicitly requested in Experiments 1 and 2 (Experiment 4 deals with this issue further). We 
further asked participants to indicate whether they reached their answer by mental calculation or 
rough estimation. We hypothesized that mental calculation would be a more accurate strategy 
than rough estimation, especially because there were no time constraints placed on participants to 
complete the task. Moreover, we hypothesized that mental calculation would be more likely to be 
employed with the numeric format than with the verbal format, where, as we have noted, there is 
a lower likelihood of accessing an appropriate schema for performing the arithmetic operations.  
 
Method 
 
Participants  
 
Experiment 3 was administered to 21 Canadian intelligence analysts during regular course time 
at the Canadian Forces School for Military Intelligence (CFSMI) at Canadian Forces Base 
Kingston in Kingston, Ontario, Canada. Five additional Canadian intelligence analysts 
participated remotely using a Qualtrics survey link distributed by their manager. Participants 
were informed that their participation was voluntary and that they would not be remunerated for 
their time. None of the CFSMI attendees refused to participate. The final sample (N = 26) was 
92.3% male and aged 25 to 50 (M = 36.35, SD = 6.72). 
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Design  
 
Like Experiment 2, Experiment 3 examined probability format (numeric, verbal) as a between-
subjects factor. However, given the substantially lower power of this experiment compared to 
Experiment 2, only one arithmetic operation (averaging) was examined. The dependent variables 
were the same as in Experiment 2. 

Procedure 
 
The procedure followed that of Experiment 2 except for two changes. First, in an introductory 
paragraph modified from Experiment 2, participants received explicit instruction at the beginning 
of the experiment not to use a calculator. Second, after completing the experimental task, 
participants were asked (1) whether they arrived at their answers through mental calculation or 
rough estimation, and (2) whether or not they used a calculator for any of the questions. For 
precise changes, see https://osf.io/5dwh8/.  

Participants completed the experiment as part of three brief studies run in randomized order. The 
other studies examined the effect of probability format on the perception of implicit 
recommendations from a hypothetical forecaster and on the interpretation of confidence 
statements in intelligence assessments. Following the core experimental tasks, all participants 
completed individual difference tests measuring numeracy6 and AOT (PVRT was not included 
due to  constraints on the overall time available for testing). 

Results 
 
Accuracy  
 
MSAE was analyzed in a one-way (Format) ANCOVA with numeracy and AOT as covariates. 
Supporting the numeric superiority hypothesis, intelligence analysts who were asked to compute 
averages from precise numeric probabilities (M = 0.076 [0.033, 0.120]) were significantly more 
accurate than analysts who were asked to do so from verbal probabilities (M = 0.173 [.129, 
216]), F(1, 22) = 10.41, MSE = 0.06, p = .004, hp2 = .32.  
 
Next, we examined support for the differential schematicity hypothesis. The correlation between 
numeracy and MSAE was comparable in the numeric condition (r[11] = –.28, p = .36) and the 
verbal condition (r[106] = –.27, p = .38), z = 0.02, one-tailed p = .49. Therefore, we did not find 
support for this hypothesis in the analysis of accuracy scores.  
 
A novel feature of Experiment 3 was the inclusion of a question asking participants whether they 
used mental calculation or rough estimation to answer the averaging question. Sixteen (61.5%) 
participants reported using mental calculation, whereas 10 (38.5%) reported using rough 

 

6Where the numeracy test used in Experiments 1 and 2 elicited a combination of multiple choice 
and text-box inputs, here we used a purely multiple-choice version for ease of scoring. For both 
versions of the numeracy test, see https://osf.io/5dwh8/. 
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estimation. A greater proportion of participants in the numeric condition (53.8%) reported using 
mental calculation than in the verbal condition (23.1%). Although a test of non-independence did 
not reach a conventional significance level, there was a medium effect size detected, c2(1, N = 
26) = 2.60, p = .107, f = .32. Moreover, MSAE was marginally lower among participants who 
reported using mental calculation (M = 0.082, SD = 0.085) than among participants who reported 
using rough estimation (M = 0.151, SD = 0.086), t(24) = -1.99, p = .059, Hedges’ g  = -0.81. 
 
As in the previous experiments, MAD in the verbal condition was significantly greater than zero 
(M = 0.012, SD = 0.020, t[12] = 2.21, p = .047, Cohen’s d = 0.60), indicating unreliability in the 
interpretation of verbal probabilities. Consistent with Experiments 1 and 2, MAD was not 
significantly correlated with MSAE, r(11) = -.05, p = .87. Thus, as in the previous experiments, 
accuracy in the verbal condition does not appear to depend on the reliability of participants’ 
mapping of verbal to numeric probabilities.  
 
Coherence 
 
All of the participants in Experiment 3 provided coherent averages in either the numeric or 
verbal condition. Therefore, tests of the differential schematicity hypothesis such as those 
conducted in Experiments 1 and 2 could not be performed.  
 
Discussion 
 
Using an expert sample of intelligence analysts, Experiment 3 generalized the key finding of 
Experiments 1 and 2; namely, that arithmetic computation (i.e., averaging) involving 
probabilities is more accurate if the probability information is received as precise numeric 
probabilities rather than as verbal probabilities. However, the correlation between accuracy and 
numeracy was virtually identical in the two format conditions. This apparently contradicts the 
differential schematicity hypothesis. However, the difference in results may be explained in 
terms of the differential skill level of the samples. Accuracy on the averaging task was better in 
the expert sample of Experiment 3 than in the crowd-sourced samples of Experiments 1 and 2. 
Perhaps even more important, in the earlier experiments the correlational analysis included data 
from participants who completed the more difficult multiplication task, whereas in Experiment 3 
participants were not asked to compute products. A high degree of mean accuracy suggests that 
few participants in Experiment 3 were at a loss for recruiting a relevant schema for the task. This 
is reaffirmed by the fact that no participant was incoherent in either the numeric or verbal 
condition. Therefore, Experiment 3 may be incapable of providing an adequately sensitive test of 
the differential schematicity hypothesis.  
 
Experiment 3 nevertheless provided tentative support, based on self-reported strategy use, for the 
hypothesis that mental calculation (as opposed to guesswork) is more likely to be used if the 
probabilities received are in numeric rather than verbal format (where the effect size was 
medium). Also, mental calculation rather than guessing was found to be associated with greater 
accuracy (where the effect size was large). However, due to the low statistical power associated 
with Experiment 3’s small sample size, these effects fell short of a conventional significance 
level. We replicated these hypothesis tests in Experiment 4 using a much larger sample.  
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Experiment 4 
 
As stated above, Experiment 4 was administered online to replicate the key results of Experiment 
3. To expand on previous findings, we also examined participants’ ability to perform arithmetic 
operations with imprecise numeric probabilities (i.e., ranges). The inclusion of an imprecise 
numeric condition permitted an examination of whether the numeric superiority effect reflects 
the benefits of precision more than quantification. Given that numeric ranges are unambiguous 
but imprecise, we hypothesized that computational accuracy and coherence would be greatest 
with the precise numeric format, followed by the imprecise numeric format, and then with the 
verbal format. As in Experiment 3, we explicitly instructed participants not to use a calculator 
and elicited their computational strategy following the core experimental tasks. We expected to 
replicate the findings of Experiment 3 indicating that mental calculation is more likely to be used 
by participants operating on numeric probabilities than those operating on verbal probabilities, 
and that mental calculation is more strongly associated with arithmetic accuracy than rough 
guessing. We also expected to find support for the differential schematicity hypothesis. As with 
the numeric superiority hypothesis, we expected results obtained in the numeric range condition 
to fall between those obtained in the precise and verbal conditions. Thus, we expected the 
strongest correlation with numeracy  with the precise format and the weakest correlation with 
numeracy with the verbal format. As before, we aimed to test this hypothesis on both accuracy 
and coherence measures.  
 
Method 
 
Participants 
 
Experiment 4 was administered to participants (50.8% male) between the ages of 18 and 60 (M = 
44.20, SD = 10.77) using Qualtrics Panels. We used the same inclusion and exclusion criteria as 
in Experiments 1 and 2. In spite of our instructions, 31 (8.3%) participants reported using a 
calculator during the core experimental tasks. These cases were removed and the final sample 
included 343 participants. 
 
Design 
 
Experiment 4 used a 3 (Format: precise numeric [henceforth, point], imprecise numeric 
[henceforth, range], verbal) ´ 2 (Operation: averaging, multiplication) between-subjects design. 
The dependent variables were the same as in Experiment 3. In the range condition, accuracy and 
coherence were scored as in the point condition, given that ranges can be converted into point 
estimates corresponding to the midpoint of the range with margins of error corresponding to half 
the range (Moore, Kearfott, & Cloud, 2009).7 

 

7We regard this measure as a suitably conservative test of performance in the range condition. 
An alternative, such as calculating the best score possible given the range of values would 
undermine the comparability of performance across conditions given that no such allowances are 
made in the point and verbal conditions.  



16 Arithmetic Computation  

 
Procedure 
 
The procedure followed that of Experiment 3, but the sample was large enough for us to again 
examine both averaging and multiplication. Participants in the point and verbal conditions were 
shown the same sets used in Experiments 1-3. In the range condition, Sets 1 and 2 comprised the 
corresponding values {0.70 to 0.80, 0.20 to 0.30, 0.75 to 0.85, 0.60 to 0.70} and {0.20 to 0.30, 
0.70 to 0.80, 0.20 to 0.30, 0.15 to 0.25}, respectively. These values were established by taking 
the corresponding values in the point condition and adding a 5% margin of error above and 
below the value. Following the core experimental tasks, participants completed measures of 
numeracy, PVRT, and AOT. The numeracy measures had multiple-choice options as in 
Experiment, whereas PVRT and AOT were the same as in Experiments 1 and 2.  
 
Results  
 
Accuracy 
 
We examined MSAE in a two-way (Format ´ Operation) factorial ANCOVA controlling for 
numeracy, PVRT, and AOT. As Table 5 shows, the main effects of format and operation were 
significant, but the two-way interaction was not significant. Figure 3 illustrates that the main 
effect of operation was due to the lower error in the averaging condition than in the 
multiplication condition. Pairwise testing using Fisher’s Least Significant Difference test showed 
that error was significantly lower in the point condition than in the verbal (p = .002) and range (p 
= .015) conditions. The latter two conditions did not differ significantly (p > .52).  
 
In support of the differential schematicity hypothesis, numeracy was significantly correlated with 
MSAE in the point condition (r[107] = –.41, p < .001) and the range condition (r[112] = –.29, p 
= .002) but these variables were not significantly correlated in the verbal condition (r[118] = –
.01, p = .89). Given the virtually nil correlation in the verbal condition, it is evident that both the 
point and range conditions yield significantly stronger correlations, although the correlations in 
the point and range condition did not differ significantly from each other, z = 1.01, one-tailed p = 
.16.  
 
As shown in Table 6, a majority of participants reported using rough estimation to solve the 
arithmetic task. Table 6 also shows the percentage of participants using each strategy as a 
function of format. To examine whether strategy use varied systematically by format, we treated 
verbal, range, and point conditions as an ordered set ranging from qualitative-imprecise to 
quantitative-precise, respectively. We hypothesized that mental calculation use would increase 
along this scale. Supporting this hypothesis, a Somers’ D test of ordinal association treating 
format as the independent variable was equal to -.096, SE = .043, t = -2.23, p = .025. Consistent 
with Experiment 3, MSAE was significantly lower among participants who reported using 
mental calculation (M = 0.253, SD = 0.247) than among those who reported using rough 
estimation (M = 0.398, SD = 0.273), t(341) = -5.02, p < .001, Hedges’ g  = -0.55.  
 
Taken together, the preceding findings suggest that the accuracy advantage of point numeric 
probabilities over verbal probabilities observed in Experiments 1-4 may be mediated by strategy 
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use. That is, receivers of numeric point probabilities may favour calculation over guesswork 
more than receivers of verbal probabilities, and mental calculation, in turn, is associated with 
better accuracy than guesswork. To test this mediation hypothesis, we excluded the range 
condition and treated format as a predictor variable, strategy as a mediator variable, and MSAE 
as the dependent variable. Figure 5 shows the results, which suggest that strategy use partially 
mediates the relation between format and accuracy. This is further supported by the result of a 
Sobel test, which confirms that the attenuation of the predictor’s influence is statistically 
significant when the mediator is included in the model, z = -2.03, p = .042.  
 
Finally, as in Experiments 1-3, MAD in the verbal condition was significantly greater than zero 
(M = 0.128, SD = 0.165, t[119] = 8.49, p < .001, Cohen’s d = 0.78), indicating unreliability in the 
interpretation of verbal probabilities. As in the prior experiments, MAD calculated in the verbal 
condition was also not significantly correlated with MSAE, r(118) = .01, p = .90. 
 
Coherence 
 
We examined incoherence scores in a two-way (Format ´ Operation) factorial ANCOVA with 
numeracy, PVRT, and AOT as covariates. As Table 7 shows, the main effects of format and 
operation and the interaction effect were significant. As in Experiments 1 and 2, incoherence was 
more pronounced for the multiplication task than for the averaging task. Figure 4 plots the 
interaction effect. Simple-effect tests (once again controlling for numeracy, PVRT, and AOT) 
show that, for averaging, incoherence was significantly greater in the range condition than in the 
point and verbal conditions, p = .002 and .047, respectively; F(2, 172) = 5.08, p = .007, hp2 = 
.056. The point and verbal conditions did not differ significantly. For multiplication, incoherence 
was significantly greater in the verbal condition than in the point condition (p < .001), and 
neither condition significantly differed from the range condition; F(2, 159) = 7.34, p = .001, hp2 

= .085.   
 
Next, we tested support for the differential schematicity hypothesis. The correlations between 
numeracy and incoherence followed a similar pattern as observed with the comparable accuracy 
analysis. The correlations in the point, range, and verbal conditions were -.31 (df = 107, p = 
.001), -.16 (df = 112, p = .084), and -.05 (df = 118, p = .611), respectively. Supporting the 
differential schematicity hypothesis, the correlation in the point condition was significantly 
greater than in the verbal condition (z = 2.02, one-tailed p = .022). The range condition was not 
significantly different from either the point condition (z = 1.17, one-tailed p = .121) or the verbal 
condition (z = 0.84, one-tailed p = .20). 
 
Finally, we examined whether coherence differed as a function of reported strategy use. 
Consistent with the results for accuracy, mean incoherence was significantly greater among the 
subsample who reported using rough estimation (M = 1.04, SD = 0.94) than among the 
subsample who reported using mental calculation (M = 0.61, SD = 0.88), t(341) = 4.31, p < .001, 
Hedges’ g = 0.47.  
 
Discussion 
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Experiment 4 replicated key findings of our earlier experiments. Specifically, we found that 
accuracy was better with the point numeric format than with the verbal format and participants 
were more coherent with the point  format than with the verbal format when computing products, 
where the greatest level of incoherence was evident. This replication is important because unlike 
Experiments 1 and 2, in Experiment 4, participants were explicitly instructed not to use 
calculators and those who reported that they did were excluded from the analyses. In this regard, 
the findings of Experiment 4 reinforce those of Experiment 3, which also prohibited participants 
from using calculators, but which relied on a small sample and did not examine multiplication.  
 
Experiment 4 also replicated the findings of Experiment 3 showing that use of a mental 
calculation strategy as opposed to rough estimation is more likely to be adopted when presented 
with point numeric probabilities rather than verbal probabilities. Interestingly, we found that the 
range format fell between the numeric and verbal formats in terms of the proportion of 
participants reporting to use mental calculation. Moreover, we replicated the finding of 
Experiment 3 that self-reported mental-calculation users were more accurate than those who 
reported using rough estimation, and this effect also was generalized to coherence violations. In 
both cases, the observed effect sizes were medium by conventional standards. These results 
further enabled us to test a mediator model and we found that strategy use partially mediated the 
effect of format (i.e., point numeric vs. verbal) on accuracy.  
 
Experiment 4 also replicated support for the differential schematicity hypothesis, finding that the 
correlation between numeracy and accuracy was significantly smaller with the verbal format than 
with the precise and range formats. Similarly, the correlation between numeracy and coherence 
was significantly smaller with the verbal format than with the precise format. 
 
Finally, Experiment 4 revealed an important qualification to the numeric superiority hypothesis: 
whereas accuracy and coherence tended to be better among participants presented with point 
probabilities than with verbal probabilities, participants presented with numeric ranges showed 
no appreciable computational advantage over participants presented with verbal probabilities. In 
fact, on at least one performance criterion i.e., coherence on the averaging task, participants 
presented with numeric ranges were significantly less coherent than participants presented with 
either point numeric or verbal probabilities. In the General Discussion, we examine the 
implications of this finding for the numeric superiority hypothesis.  
 

General Discussion 
 
As noted earlier, decision-makers rely on experts’ probability judgments across a wide range of 
situations. Often decision-makers have to fuse multiple judgments in order to support their 
decision-making and planning objectives. Sometimes it is useful, if not necessary, to combine 
multiple probability estimates into an average or a product, such as when estimates from multiple 
advisors require aggregating or when threat probabilities can be estimated from the conjunctive 
probability of their necessary and jointly sufficient preconditions. We investigated how 
accurately and coherently individuals could compute such results from probabilities presented 
verbally or numerically, given that probability judgments may be communicated verbally in 
many consequential domains.  
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Across the four experiments we observed a high degree of consistency in the results. Invariably, 
participants presented with precise numeric probabilities were more accurate in their arithmetic 
computations than participants presented with verbal probabilities. With the exception of 
Experiment 3 in which all participants (intelligence analysts) responded coherently, participants 
presented with precise numeric probabilities also tended to exhibit greater coherence than 
participants presented with verbal probabilities. These differences cannot be explained by 
differential rates of calculator use or by success in using calculators because Experiments 3 and 
4, which prohibited calculator use and excluded self-reported calculator users, yielded findings 
comparable to Experiments 1 and 2, which did not instruct participants to avoid using 
calculators. Nor does the numeric superiority effect appear to be due to sample characteristics 
given that the effect was evident not only in multiple crowd-sourced samples but also in a sample 
of professional intelligence analysts. 
 
The results of Experiments 3 and 4, in particular, shed light on why point probabilities supported 
computation more effectively. First, we observed in both of these experiments that participants 
who received point numeric probabilities were more likely than participants who received verbal 
probabilities to report using a mental calculation strategy rather than relying on a rough estimate. 
We also showed that participants who used mental calculation had better accuracy. Furthermore, 
in Experiment 4, which had sufficient statistical power to test a mediation model, we confirmed 
that the effect of format on accuracy was significantly, albeit partially, mediated by strategy use. 
Therefore, it appears that part of the causal basis for the numeric superiority effect is that 
receiving point numeric probabilities as opposed to verbal probabilities makes it more likely that 
those who must compute with the probabilities will use an explicit computational approach as 
opposed to an implicit one consistent with guesswork, and the explicit approach tends to yield 
better accuracy.  
 
The findings of Experiment 4 also shed light on the generalizability of the numeric superiority 
effect. The fact that participants who received numeric probability ranges were not significantly 
more accurate than participants who received verbal probabilities indicates that quantification of 
probability information per se may be less important than whether such information is expressed 
in precise or imprecise terms. The findings of Experiment 4 suggest that when communicated 
numeric probabilities are imprecise, people are less inclined to use calculation and more inclined 
to use guesswork to estimate arithmetic values than when the communicated probabilities are 
precise. In hindsight, we find this result unsurprising because, as with verbal probabilities, few 
people have experience computing arithmetic operations on ranges and doing so is unlikely to be 
part of one’s formal education. Moreover, the response mode for the arithmetic tasks, which 
called for a point value to be selected, is incongruent with processing ranges defined by lower- 
and upper-bound quantities. Therefore, it would be useful in future research to examine the 
accuracy of computations with imprecise numeric probabilities when participants are required to 
provide lower and upper bounds on their best estimates. Perhaps the bounds would be more 
easily calculable than the best estimates given that they are congruent with the information 
provided in the range condition. Another option would be to require participants in each of the 
three format conditions to provide upper and lower bounds as well as a best estimate. 
Participants presented with the verbal format could also be asked to provide their upper and 
lower bounds when giving their numeric probability equivalents for the relevant probability 
terms.  
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Our findings suggest that people have difficulty thinking about verbal probabilities as inputs for 
arithmetic computations. Not only was accuracy and coherence impeded when participants 
received verbal probabilities, there was also substantial support for the differential schematicity 
hypothesis in the present research. In the experiments in which the more difficult multiplication 
task was administered, accuracy and coherence were each significantly more strongly correlated 
with numeracy in the point numeric condition than in the verbal condition. For the easier 
averaging task, the results were less consistent, but where there were significant differences in 
correlation strength detected (i.e., in Experiments 1, 2, and 4 for accuracy, and Experiments 2 
and 4 for coherence), the differences were in the direction predicted by the differential 
schematicity hypothesis. The relations observed in the point numeric condition are as one might 
expect: more numerate individuals are less likely to violate coherence principles (e.g., Stanovich 
& West, 2000). The attenuation or near-elimination of these relations in the verbal condition 
across three experiments is therefore noteworthy as it suggests that at least for many individuals, 
regardless of their numeracy, the task of arithmetically computing with verbal probabilities is 
sufficiently difficult, and this is likely because they lack an adequate schema for computing with 
verbal probabilities. This might be why participants in the verbal condition are more likely to 
rely on guesswork than mental computation. Whatever affordances verbal probabilities may 
provide, the present research indicates that computability is not one of them. Nevertheless, 
computability is vital in many areas of expert judgment and decision making in which 
probability information is routinely communicated verbally (Dhami & Mandel, 2020; Mandel & 
Irwin, 2020b).  
 
Our findings pertaining to the coherence of participants’ responses contrast with those of 
Wallsten et al. (1993) who observed no advantage of a point numeric probability format over a 
verbal probability format in promoting additivity. However, Wallsten et al. (1993) measured 
additivity violations for binary complements that were averaged across multiple items. As 
Mandel (2005) noted, studies that have found additivity of binary complements tend to average 
probability estimates over multiple items, just as Wallsten et al. (1993) did. Accordingly, their 
study seems to have constituted a weaker test of the numeric superiority effect than that provided 
in the present research. Indeed, in our own experiments, the advantage of receiving point 
numeric probabilities over verbal probabilities for coherent responding was significantly greater 
in the more challenging multiplication task than in the easier averaging task. It would be useful 
to test the difference in violation of the additivity property using tasks that avoid binary 
complements and that are known to induce subadditivity-producing “unpacking effects” (e.g., 
Mandel, 2005, 2008; Rottenstreich & Tversky, 1997; Tversky & Koehler, 1994) or that have 
successfully yielded additivity violations using binary complements where probabilities were 
presented in the verbal format (Karvetski & Mandel, 2020). 
 
Despite the aforementioned comparison between the present research and Wallsten et al. (1993), 
we propose that the tasks we used nevertheless constitute conservative tests of the numeric 
superiority hypothesis because we started with common, verbal probability phrases and then 
found average numeric equivalents for those terms. Alternatively, we could easily have devised 
experiments that started with numeric probabilities that would almost surely pose great difficulty 
for arithmetic computation. For instance, we could have asked participants to multiply a 45/1,000 
chance by a 1/1,000,000 chance and then given them a log-linear scale that offers order-of-
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magnitude granularity between probabilities of 0 and .01 and between .99 and 1. However, given 
that there are no words to adequately convey variation in probability across those ranges, 
conducting such an experiment seems unnecessary–the verbal equivalents (e.g., extremely 
unlikely) used to establish the corresponding inputs in the verbal condition would not back-
translate well and would yield highly inaccurate results for arithmetic calculations. Yet, events 
characterized by extremely low probabilities, high timing unpredictability, and high consequence 
severities are precisely the sort that decision-makers in many consequential domains must 
prepare for (Makridakis & Taleb, 2009). It is for the same reason that we did not seek to ensure 
that response modes were matched to probability formats. We could, for instance, have required 
participants in the verbal condition to provide their averages and products in terms of a verbal-
probability response. For instance, we might have asked them to provide a verbal probability that 
best captures their answer, and then we could have asked participants for a numeric probability 
equivalent of that term, which would be scored for accuracy. Although such an experiment 
would be informative, we do not believe it is necessary to examine the effect of probability 
format on arithmetic computation because the response “modes” do not simply differ in 
modality—they also differ in their potential for granularity and coverage over the possible range 
of computed values. Whereas numeric response modes cover the full possibility space, verbal 
response modes cover opaquely-defined patches of that space.   
 
Future research on the present topic might focus on any of the following issues. First, to better 
understand the causal bases for the numeric superiority effect, it would be useful to conduct a 
more detailed process-tracing study to elucidate how arithmetic strategy use might differ when 
computing with numeric versus verbal probability inputs. For instance, perhaps individuals 
presented with verbal probabilities have difficulty translating them into numeric equivalents, 
which then need to be operated on while being held in working memory. If this task is too 
challenging, it might prompt individuals to simply guess. Second, it would be instructive to 
examine how individuals combine probability estimates that are communicated in mixed 
formats. For instance, if a decision-maker is presented with three numeric probability estimates 
and three verbal probability estimates and the decision-maker wishes to average them, would the 
numeric probabilities (which are easier to compute) be given disproportionate weight in the 
average? If so, would the differential weighting be due to primarily to differences in 
computability (e.g., perhaps the numeric estimates would be weighted more strongly because 
they are easier to work with) or perhaps to users’ inferences about the underlying sources of 
uncertainty they convey (e.g., with verbal probabilities being suggestive of epistemic uncertainty   
and numeric probabilities being suggestive of aleatory uncertainty; Juanchich & Sirota, 2020)? 
Third, the numeric superiority hypothesis could be tested on other arithmetic operations, such as 
adding probabilities to compute the disjunctive probability of two or more mutually exclusive 
events or adjusting probabilities to reflect a proportional increase or decrease in the present value 
(e.g., new intelligence reveals that a particular threat probability just increased by one-third of its 
currently recorded level). Finally, given that the interpretation of verbal probabilities is context 
dependent in several respects (e.g., Brun & Teigen, 1988; Harris & Corner, 2011; Mandel, 2015; 
Wallsten, Fillenbaum, & Cox, 1986; Weber & Hilton, 1990), consistent with their linguistic 
function as relative adjectives whose meaning depends on their specific use (Clark, 1990), 
experiments could examine arithmetic ability in tasks that vary contextual factors such as event 
base-rate, severity and valence that have been shown to influence the interpretation of verbal 
probabilities. In fact, context-rich tasks could be used to test the reliability of arithmetic 
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computation across content domains. Given that translations of verbal to numeric probabilities 
are highly variable across content domains, especially for those less skilled in probabilistic 
judgment (Mellers, Baker, Chen, Mandel, & Tetlock, 2017), we might expect that less numerate 
individuals would show especially poor cross-domain reliability. More generally, given the 
effects of multiple contextual factors on the interpretation of verbal probabilities, we predict that 
verbal probabilities would yield less reliable computations than numeric probabilities. 
 
In summary, our research revealed that simple arithmetic computations of the kind often required 
in several expert judgment and decision-making domains were more accurate and coherent if 
probability information was provided in the form of point numeric estimates rather than verbal 
estimates. Moreover, in our last experiment, we showed that computation using point estimates 
also outperformed computation based on numeric range information. The results are notable 
because organizations that generate probability estimates for consumption by other experts, 
decision-makers, or the general public typically provide such estimates in the form of verbal 
probabilities. These verbal probabilities are sometimes further anchored using imprecise numeric 
ranges, as in the Intergovernmental Panel on Climate Change standard or various intelligence 
community standards for communicating probabilities in intelligence estimates (e.g., Ho et al., 
2015). Although coarse and fuzzy probability estimates may suffice or even be preferable in 
some communication contexts (Wallsten & Budescu, 1995; Zimmer, 1984), communicating with 
verbal probabilities may be woefully inadequate in others. Nor does our research (see 
Experiment 4) offer optimism for organizational remedies for the vagueness of verbal 
probabilities that call for translating a lexicon of verbal probability terms into numeric ranges 
(e.g., Dhami, 2018; Ho et al., 2015) and embedding numeric-range equivalents where such terms 
appear in text (Budescu et al., 2009; Budescu, Por, Broomell, & Smithson, 2014; Mandel & 
Irwin, 2020a; Wintle, Fraser, Wills, Nicholson, & Fidler, 2019). Rather, our findings suggest that 
when communicated probabilities serve as inputs for judgments or decisions that require 
mathematical computation of those values, they should be communicated as numeric point 
probabilities. As noted earlier, point probabilities are rated as conveying probability information 
more clearly than verbal probabilities (Collins & Mandel, 2019). Using point probabilities would 
also enable more granular assessments to be made and communicated to others, and this has been 
shown to yield substantial accuracy gains in forecasting (Friedman, Baker, Mellers, Tetlock, & 
Zeckhauser, 2018).  
 
However, a valid concern with using point probabilities is the risk of communicating more 
precision in the estimate than is warranted. In fact, recent proposals to use numeric probabilities 
instead of verbal probabilities in communicating to end-users (e.g., Dhami & Mandel, 2020; 
Mandel & Irwin, 2020b; Mandel, Wallsten, & Budescu, 2020) have noted that numbers can be as 
imprecise as required since estimates can be expressed as ranges. Therefore, it would be useful to 
examine in future research how well point estimates accompanied by margins of error fare as a 
basis for arithmetic computation. Perhaps expressing imprecise numeric probabilities in that 
format (e.g., 70% ± 10%) supports computation more effectively than numerically equivalent 
ranges (e.g., 60% to 80%) given that the central estimate is explicit in the former case. What is 
clear, however, is that, whereas numerical probability ranges can be converted into point 
estimates with margins of error (Moore et al., 2009), verbal probabilities cannot be objectively 
translated from imprecise to precise representations. Additionally, verbal probabilities are vague 
as well as imprecise. Our research makes that abundantly clear: in each experiment, participants 
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(both expert analysts and non-experts) were substantially unreliable in their interpretations of 
verbal probabilities, even within a short timespan and across conceptually equivalent tasks. 
Under optimal conditions, this vagueness does not preclude the possibility of arithmetic 
computation: if one were to elicit, say, a membership function for each probability term used in a 
computational context, interval calculus could be applied to those functions (e.g., Dubois & 
Prade, 1978; Kosiński, Prokopowicz, & Ślęzak, 2003; Zadeh, 1975). However, most contexts in 
which verbal probabilities are communicated do not have this feature. The vagueness is neither 
quantified through elicitation of membership functions nor, in the absence of such 
transformations, amenable to fuzzy computational processes.   
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Table 1. Analysis of covariance on mean standardized absolute error (MSAE) in Experiment 1 

Source MSE F p hp2 
Intercept 8.70 99.03 .000 .324 
Numeracy 0.46 5.24 .023 .025 
PVRT 0.19 2.19 .141 .010 
AOT 0.16 1.80 .182 .009 
Format 0.82 9.44 .002 .043 
Error (between subjects) 0.87    
Operation 0.77 17.85 .000 .079 
Format × Operation 0.00 0.00 .972 .000 
Error 0.04    
Note. df = 1, 208. Model based on Type III sum of squares. For brevity, interactions with 
covariates are not reported.  
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Table 2. Analysis of covariance on incoherence scores in Experiment 1 

Source MSE F p hp2 
Intercept 74.26 167.98 .000 .447 
Numeracy 7.14 16.16 .000 .072 
PVRT 2.49 5.64 .018 .026 
AOT 0.93 0.21 .647 .001 
Format 13.35 30.21 .000 .127 
Error (between subjects) 0.44    
Operation 7.97 16.52 .000 .074 
Format × Operation 2.57 5.33 .022 .025 
Error 0.48    
Note. df = 1, 208. Model based on Type III sum of squares. For brevity, interactions with 
covariates are not reported.  
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Table 3. Analysis of covariance on mean standardized absolute error (MSAE) in Experiment 2  

Source MSE F p hp2 
Intercept 5.11 118.85 .000 .419 
Numeracy 0.23 5.23 .023 .026 
PVRT 0.15 3.39 .067 .017 
AOT 0.00 0.03 .857 .000 
Format 1.40 27.12 .000 .123 
Operation 7.64 32.62 .000 .144 
Format × Operation 0.31 7.17 .008 .036 
Error 0.04    
Note. df = 1, 194. Model based on Type III sum of squares.  
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Table 4. Analysis of covariance on coherence scores in Experiment 2  

Source MSE F p hp2 
Intercept 42.89 110.52 .000 .363 
Numeracy   2.75     7.08 .008 .035 
PVRT   0.59     1.53 .218 .008 
AOT   0.44     1.13 .288 .006 
Format 22.07   56.88 .000 .227 
Operation 44.25 114.02 .000 .370 
Format × Operation   3.67     9.45 .002 .046 
Error   0.39    
Note. df = 1, 194. Model based on Type III sum of squares.  
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Table 5. Analysis of covariance on mean standardized absolute error (MSAE) in Experiment 4  

Source df MSE     F p hp2 
Intercept     1 7.75 143.26 .000 .300 
Numeracy     1 0.51     9.38 .002 .027 
PVRT     1 0.17     3.10 .079 .009 
AOT     1 0.03     0.49 .484 .001 
Format     2 0.28     5.22 .006 .030 
Operation     1 4.81   88.91 .000 .210 
Format × Operation     2 0.02     0.31 .733 .002 
Error 334 0.05    

Note. Model based on Type III sum of squares.  
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Table 6. Percentage of participants’ self-reported strategy use by format. 
 
  Format   
Strategy Verbal Range Point Total 
Mental calculation 33.3 40.4 47.7 40.2 
Rough estimation 66.7 59.6 52.3 59.8 
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Table 7. Analysis of covariance on incoherence scale in Experiment 4 
 
Source df MSE     F p hp2 
Intercept     1   42.10   89.48 .000 .211 
Numeracy     1     1.99     4.23 .040 .013 
PVRT     1     0.44     0.93 .336 .003 
AOT     1     0.35     0.75 .389 .002 
Format     2     4.14     8.80 .000 .050 
Operation     1 119.35 253.63 .000 .432 
Format × Operation     2     2.07     4.39 .013 .026 
Error 334     0.47    

Note. Model based on Type III sum of squares.  
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Figure 1. Mean standardized absolute error (MSAE) by format and operation in Experiment 1. 
Error plots show estimated marginal means and 95% confidence intervals from ANCOVA. Box-
and-whisker plots show the distribution of MSAE for each condition based on sample data.  
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Figure 2. Mean standardized absolute error (MSAE) by format and operation in Experiment 2. 
Error plots show estimated marginal means and 95% confidence intervals from ANCOVA. Box-
and-whisker plots show the distribution of MSAE for each condition based on sample data. 
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Figure 3. Mean standardized absolute error (MSAE) by format and operation in Experiment 4. 
Error plots show estimated marginal means and 95% confidence intervals from ANCOVA. Box-
and-whisker plots show the distribution of MSAE for each condition based on sample data.  
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Figure 4. Mean incoherence by format and operation in Experiment 4. Error plots show 
estimated marginal means and 95% confidence intervals from ANCOVA.  
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Figure 5. Mediation model in Experiment 4. Values are standardized regression coefficients and 
the value in parentheses controls for the mediator. *p < .05, **p < .01, ***p < .001. 
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