49 research outputs found

    A Dynamic Approach to MIB Polling for Software Defined Monitoring

    Get PDF
    Technology trends such as Software-Defined Networking (SDN) are transforming networking services in terms of flexibility and faster deployment times. SDN separates the control plane from the data plane with its centralised architecture compared with the distributed approach used in other management systems. However, management systems are still required to adapt the new emerging SDN-like technologies to address various security and complex management issues. Simple Network Management Protocol (SNMP) is the most widespread management protocol implemented in a traditional Network Management System (NMS) but has some limitations with the development of SDNlike services. Hence, many studies have been undertaken to merge the SDN-like services with traditional network management systems. Results show that merging SDN with traditional NMS systems not only increases the average Management Information Base (MIB) polling time but also creates additional overheads on the network. Therefore, this paper proposes a dynamic scheme for MIB polling using an additional MIB controller agent within the SDN controller. Our results show that using the proposed scheme, the average polling time can be significantly reduced (i.e., faster polling of the MIB information) and also requires very low overhead because of the small sized OpenFlow messages used during polling

    Deploying SDN architecture in Open Optical Transport Networks

    Get PDF
    Pro udrženı́ tempa s rostoucı́mi požadavky na přenosovou rychlost, latenci a bezpečnost je nutné zvážit současnou koncepci řı́zenı́ sı́tı́. Software-Defined Networking (SDN) je jedno z možných řešenı́, ke kterému telekomunikačnı́ průmysl směruje. Tato práce představuje současný stav Software-Defined Networking a zaměřuje se na vybraná open-source řešenı́ v oblasti SDN kontrolerů, jako je ONOS či OpenDaylight. Hlavnı́m cı́lem této části práce je vysvětlit, jak může SDN pomoci vyřešit rostoucı́ požadavky na rozšı́řenı́ automatizace v otevřených optických sı́tı́ch. Praktická část této práce je rozdělená do dvou oblastı́. V rámci prvnı́ oblasti jsem se zabýval rozšı́řenı́m funkčnosti SDN kontroleru pro umožněnı́ konfigurace a řı́zenı́ optických komunikačnı́ch zařı́zenı́. Hlavnı́m přı́nosem je implementace nových funkcionalit SDN driveru pro Nokia 1830 PSS (ROADM) a rozšı́řenı́ funkcionality driveru pro Nokia 1830 PSI-2T (optický transpondér). Ve druhé části práce jsem se zabýval problematikou korelace alarmů v otevřených optických sı́tı́ch. Výsledkem je funkce pro korelaci alarmů ve formě SDN aplikace, kterou jsem dále otestoval na emulovaných optických zařı́zenı́ch pro prokázánı́ funkčnosti celého konceptu.With the rising demands on the network throughput, latency and security, legacy control networking concepts should be reconsidered. Software-Defined Networking (SDN) is one of the possible solutions, to which telecommunication industry is moving. This work presents current state-of-the-art in Software-Defined Networking and focuses on some open-source solutions of SDN controllers, like ONOS and OpenDaylight. Main focus is to understand how SDN can help to solve increasing demand for broader automation in Optical Transport Networks. The practical section is divided in two parts. Within the first part I focused on extending functionality of SDN controller to facilitate more efficient configuration and control of optical network devices. Main contribution was to implement additional features to SDN drivers for Nokia 1830 PSS (ROADM) and extend functionality of Nokia 1830 PSI-2T (Optical Transponder) driver. Second part is dedicated to the Alarm Correlation problematic in open optical networks. We designed, developed an Alarm Correlation function as a SDN application then we tested it on emulated optical devices to prove the concept

    Beyond 5G Domainless Network Operation enabled by Multiband: Toward Optical Continuum Architectures

    Full text link
    Both public and private innovation projects are targeting the design, prototyping and demonstration of a novel end-to-end integrated packet-optical transport architecture based on Multi-Band (MB) optical transmission and switching networks. Essentially, MB is expected to be the next technological evolution to deal with the traffic demand and service requirements of 5G mobile networks, and beyond, in the most cost-effective manner. Thanks to MB transmission, classical telco architectures segmented into hierarchical levels and domains can move forward toward an optical network continuum, where edge access nodes are all-optically interconnected with top-hierarchical nodes, interfacing Content Delivery Networks (CDN) and Internet Exchange Points (IXP). This article overviews the technological challenges and innovation requirements to enable such an architectural shift of telco networks both from a data and control and management planes

    Quantum-Aware Software Defined Networks

    Get PDF
    Software Defined Networks (SDN) represent a major paradigm change in communications networks. It provides a level of abstraction and independence from the traditional networking practice that allows for a fast path of innovation and, specifically, opens new opportunities for Quantum Key Distribution (QKD) networks. In this contribution we explore the implications of this paradigm for the deployment of QKD in practice from the point of view of telecommunications? providers, network equipment manufacturers and applied research and development. We propose a generic quantum-aware SDN architecture and two applications, a generic end to end encryption one and other for the network infrastructure itself

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore