3,048 research outputs found

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode

    Privacy Protection and Mobility Enhancement in Internet

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The Internet has substantially embraced mobility since last decade. Cellular data network carries majority of Internet mobile access traffic and become the de facto solution of accessing Internet in mobile fashion, while many clean-slate Internet mobility solutions were proposed but none of them has been largely deployed. Internet mobile users increasingly concern more about their privacy as both researches and real-world incidents show leaking of communication and location privacy could lead to serious consequences. Just the communication itself between mobile user and their peer users or websites could leak considerable privacy of mobile user, such as location history, to other parties. Additionally, comparing to ordinary Internet access, connecting through cellular network yet provides equivalent connection stability or longevity. In this research we proposed a novelty paradigm that leverages concurrent far-side proxies to maximize network location privacy protection and minimize interruption and performance penalty brought by mobility.To avoid the deployment feasibility hurdle we also investigated the root causes impeding popularity of existing Internet mobility proposals and proposed guidelines on how to create an economical feasible solution for this goal. Based on these findings we designed a mobility support system offered as a value-added service by mobility service providers and built on elastic infrastructure that leverages various cloud aided designs, to satisfy economic feasibility and explore the architectural trade-offs among service QoS, economic viability, security and privacy

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Context awareness and related challenges: A comprehensive evaluation study for a context-based RAT selection scheme towards 5G networks

    Get PDF
    Ο αποτελεσματικός σχεδιασμός των δικτύων είναι απαραίτητος για να αντιμετωπιστεί ο αυξανόμενος αριθμός των συνδρομητών κινητού διαδικτύου και των απαιτητικών υπηρεσιών δεδομένων, που ανταγωνίζονται για περιορισμένους ασύρματους πόρους. Επιπλέον, οι βασικές προκλήσεις για τα συνεχώς αναπτυσσόμενα δίκτυα LTE είναι η αύξηση των δυνατοτήτων των υφιστάμενων μηχανισμών, η μείωση της υπερβολικής σηματοδότησης (signaling) και η αξιοποίηση ενός αποτελεσματικού μηχανισμού επιλογής τεχνολογίας ασύρματης πρόσβασης (RAT). Υπάρχουν ποικίλες προτάσεις στην βιβλιογραφία σχετικά με αυτές τις προκλήσεις, μερικές από τις οποίες παρουσιάζονται εδώ. Ο σκοπός της εργασίας αυτής είναι να ερευνήσει τις τρέχουσες εξελίξεις στα δίκτυα LTE σχετικά με την ενσωμάτωση EPC και WiFi και την επίγνωση πλαισίου (context awareness) στην διαχείριση κινητικότητας, και να προτείνει τον αλγόριθμο COmpAsS, έναν μηχανισμό που χρησιμοποιεί ασαφή λογική (fuzzy logic) για να επιλέξει την πιο κατάλληλη τεχνολογία ασύρματης πρόσβασης για τα κινητά. Επιπλέον, έχουμε ποσοτικοποιήσει το κόστος σηματοδότησης του προτεινόμενου μηχανισμού σε σύνδεση με τις σημερινές προδιαγραφές του 3GPP και εκτελέσαμε μια ολοκληρωμένη ανάλυση. Τέλος, αξιολογήσαμε τον αλγόριθμο μέσω εκτεταμένων προσομοιώσεων σε ένα πολύπλοκο και ρεαλιστικό σενάριο χρήσης 5G, που απεικονίζονται τα σαφή πλεονεκτήματα της προσέγγισής μας όσον αφορά τη συχνότητα μεταπομπών (handover) και τις μετρήσεις βασικών QoS τιμών, όπως ρυθμός μετάδοσης και καθυστέρηση.Effective network planning is essential to cope with the increasing number of mobile internet subscribers and bandwidth-intensive services competing for limited wireless resources. Additionally, key challenges for the constantly growing LTE networks is increasing capabilities of current mechanisms, reduction of signaling overhead and the utilization of an effective Radio Access Technology (RAT) selection scheme. There have been various proposals in literature regarding these challenges, some of which are discussed here. The purpose of this work is to research the current advances in LTE networks regarding EPC - WiFi integration and context awareness in mobility management, and propose the COmpAsS algorithm, a mechanism using fuzzy logic to select the most suitable Radio Access Technology. Furthermore, we quantify the signaling overhead of the proposed mechanism by linking it to the current 3GPP specifications and performing a comprehensive analysis. Finally, we evaluate the novel scheme via extensive simulations in a complex and realistic 5G use case, illustrating the clear advantages of our approach in terms of handover frequency and key QoS metrics, i.e. the user-experienced throughput and delay

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd
    corecore