2,354 research outputs found

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Bayesian robot Programming

    Get PDF
    We propose a new method to program robots based on Bayesian inference and learning. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of this approach are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics

    On Legible and Predictable Robot Navigation in Multi-Agent Environments

    Get PDF
    Legibility has recently become an important property to consider in the design of social navigation planners. Legible motion is intent-expressive, which when employed during social robot navigation, allows others to quickly infer the intended avoidance strategy. Predictability, although less commonly studied for social navigation, is, in a sense, the dual notion of legibility, and should also be accounted for in order to promote efficient motions. Predictable motion matches an observer's expectation which, during navigation, allows others to confidently carryout the interaction. In this work, we present a navigation framework capable of reasoning on its legibility and predictability with respect to dynamic interactions, e.g., a passing side. Our approach generalizes the previously formalized notions of legibility and predictability by allowing dynamic goal regions in order to navigate in dynamic environments. This generalization also allows us to quantitatively evaluate the legibility and the predictability of trajectories with respect to navigation interactions. Our approach is shown to promote legible behavior in ambiguous scenarios and predictable behavior in unambiguous scenarios. We also provide an adaptation to the multi-agent case, allowing the robot to reason on its legibility and predictability with respect to multiple interactions simultaneously. This adaptation promotes behaviors that are not illegible to other agents in the environment. In simulation, this is shown to resolve scenarios of high-complexity in an efficient manner. Furthermore, our approach yields an increase in safety while remaining competitive in terms of goal-efficiency when compared to other robot navigation planners in randomly generated multi-agent environments
    • …
    corecore