3,625 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Design and Evaluation of a Hardware System for Online Signal Processing within Mobile Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCIs) sind innovative Systeme, die eine direkte Kommunikation zwischen dem Gehirn und externen Geräten ermöglichen. Diese Schnittstellen haben sich zu einer transformativen Lösung nicht nur für Menschen mit neurologischen Verletzungen entwickelt, sondern auch für ein breiteres Spektrum von Menschen, das sowohl medizinische als auch nicht-medizinische Anwendungen umfasst. In der Vergangenheit hat die Herausforderung, dass neurologische Verletzungen nach einer anfänglichen Erholungsphase statisch bleiben, die Forscher dazu veranlasst, innovative Wege zu beschreiten. Seit den 1970er Jahren stehen BCIs an vorderster Front dieser Bemühungen. Mit den Fortschritten in der Forschung haben sich die BCI-Anwendungen erweitert und zeigen ein großes Potenzial für eine Vielzahl von Anwendungen, auch für weniger stark eingeschränkte (zum Beispiel im Kontext von Hörelektronik) sowie völlig gesunde Menschen (zum Beispiel in der Unterhaltungsindustrie). Die Zukunft der BCI-Forschung hängt jedoch auch von der Verfügbarkeit zuverlässiger BCI-Hardware ab, die den Einsatz in der realen Welt gewährleistet. Das im Rahmen dieser Arbeit konzipierte und implementierte CereBridge-System stellt einen bedeutenden Fortschritt in der Brain-Computer-Interface-Technologie dar, da es die gesamte Hardware zur Erfassung und Verarbeitung von EEG-Signalen in ein mobiles System integriert. Die Architektur der Verarbeitungshardware basiert auf einem FPGA mit einem ARM Cortex-M3 innerhalb eines heterogenen ICs, was Flexibilität und Effizienz bei der EEG-Signalverarbeitung gewährleistet. Der modulare Aufbau des Systems, bestehend aus drei einzelnen Boards, gewährleistet die Anpassbarkeit an unterschiedliche Anforderungen. Das komplette System wird an der Kopfhaut befestigt, kann autonom arbeiten, benötigt keine externe Interaktion und wiegt einschließlich der 16-Kanal-EEG-Sensoren nur ca. 56 g. Der Fokus liegt auf voller Mobilität. Das vorgeschlagene anpassbare Datenflusskonzept erleichtert die Untersuchung und nahtlose Integration von Algorithmen und erhöht die Flexibilität des Systems. Dies wird auch durch die Möglichkeit unterstrichen, verschiedene Algorithmen auf EEG-Daten anzuwenden, um unterschiedliche Anwendungsziele zu erreichen. High-Level Synthesis (HLS) wurde verwendet, um die Algorithmen auf das FPGA zu portieren, was den Algorithmenentwicklungsprozess beschleunigt und eine schnelle Implementierung von Algorithmusvarianten ermöglicht. Evaluierungen haben gezeigt, dass das CereBridge-System in der Lage ist, die gesamte Signalverarbeitungskette zu integrieren, die für verschiedene BCI-Anwendungen erforderlich ist. Darüber hinaus kann es mit einer Batterie von mehr als 31 Stunden Dauerbetrieb betrieben werden, was es zu einer praktikablen Lösung für mobile Langzeit-EEG-Aufzeichnungen und reale BCI-Studien macht. Im Vergleich zu bestehenden Forschungsplattformen bietet das CereBridge-System eine bisher unerreichte Leistungsfähigkeit und Ausstattung für ein mobiles BCI. Es erfüllt nicht nur die relevanten Anforderungen an ein mobiles BCI-System, sondern ebnet auch den Weg für eine schnelle Übertragung von Algorithmen aus dem Labor in reale Anwendungen. Im Wesentlichen liefert diese Arbeit einen umfassenden Entwurf für die Entwicklung und Implementierung eines hochmodernen mobilen EEG-basierten BCI-Systems und setzt damit einen neuen Standard für BCI-Hardware, die in der Praxis eingesetzt werden kann.Brain-Computer Interfaces (BCIs) are innovative systems that enable direct communication between the brain and external devices. These interfaces have emerged as a transformative solution not only for individuals with neurological injuries, but also for a broader range of individuals, encompassing both medical and non-medical applications. Historically, the challenge of neurological injury being static after an initial recovery phase has driven researchers to explore innovative avenues. Since the 1970s, BCIs have been at one forefront of these efforts. As research has progressed, BCI applications have expanded, showing potential in a wide range of applications, including those for less severely disabled (e.g. in the context of hearing aids) and completely healthy individuals (e.g. entertainment industry). However, the future of BCI research also depends on the availability of reliable BCI hardware to ensure real-world application. The CereBridge system designed and implemented in this work represents a significant leap forward in brain-computer interface technology by integrating all EEG signal acquisition and processing hardware into a mobile system. The processing hardware architecture is centered around an FPGA with an ARM Cortex-M3 within a heterogeneous IC, ensuring flexibility and efficiency in EEG signal processing. The modular design of the system, consisting of three individual boards, ensures adaptability to different requirements. With a focus on full mobility, the complete system is mounted on the scalp, can operate autonomously, requires no external interaction, and weighs approximately 56g, including 16 channel EEG sensors. The proposed customizable dataflow concept facilitates the exploration and seamless integration of algorithms, increasing the flexibility of the system. This is further underscored by the ability to apply different algorithms to recorded EEG data to meet different application goals. High-Level Synthesis (HLS) was used to port algorithms to the FPGA, accelerating the algorithm development process and facilitating rapid implementation of algorithm variants. Evaluations have shown that the CereBridge system is capable of integrating the complete signal processing chain required for various BCI applications. Furthermore, it can operate continuously for more than 31 hours with a 1800mAh battery, making it a viable solution for long-term mobile EEG recording and real-world BCI studies. Compared to existing research platforms, the CereBridge system offers unprecedented performance and features for a mobile BCI. It not only meets the relevant requirements for a mobile BCI system, but also paves the way for the rapid transition of algorithms from the laboratory to real-world applications. In essence, this work provides a comprehensive blueprint for the development and implementation of a state-of-the-art mobile EEG-based BCI system, setting a new benchmark in BCI hardware for real-world applicability

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Digital Innovations for a Circular Plastic Economy in Africa

    Get PDF
    Plastic pollution is one of the biggest challenges of the twenty-first century that requires innovative and varied solutions. Focusing on sub-Saharan Africa, this book brings together interdisciplinary, multi-sectoral and multi-stakeholder perspectives exploring challenges and opportunities for utilising digital innovations to manage and accelerate the transition to a circular plastic economy (CPE). This book is organised into three sections bringing together discussion of environmental conditions, operational dimensions and country case studies of digital transformation towards the circular plastic economy. It explores the environment for digitisation in the circular economy, bringing together perspectives from practitioners in academia, innovation, policy, civil society and government agencies. The book also highlights specific country case studies in relation to the development and implementation of different innovative ideas to drive the circular plastic economy across the three sub-Saharan African regions. Finally, the book interrogates the policy dimensions and practitioner perspectives towards a digitally enabled circular plastic economy. Written for a wide range of readers across academia, policy and practice, including researchers, students, small and medium enterprises (SMEs), digital entrepreneurs, non-governmental organisations (NGOs) and multilateral agencies, policymakers and public officials, this book offers unique insights into complex, multilayered issues relating to the production and management of plastic waste and highlights how digital innovations can drive the transition to the circular plastic economy in Africa. The Open Access version of this book, available at https://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license

    Kinetic energy fluctuation-driven locomotor transitions on potential energy landscapes of beam obstacle traversal and self-righting

    Full text link
    Despite contending with constraints imposed by the environment, morphology, and physiology, animals move well by physically interactingwith the environment to use and transition between modes such as running, climbing, and self-righting. By contrast, robots struggle to do so in real world. Understanding the principles of how locomotor transitions emerge from constrained physical interaction is necessary for robots to move robustly using similar strategies. Recent studies discovered that discoid cockroaches use and transition between diverse locomotor modes to traverse beams and self-right on ground. For both systems, animals probabilistically transitioned between modes via multiple pathways, while its self-propulsion created kinetic energy fluctuation. Here, we seek mechanistic explanations for these observations by adopting a physics-based approach that integrates biological and robotic studies. We discovered that animal and robot locomotor transitions during beam obstacle traversal and ground self-righting are barrier-crossing transitions on potential energy landscapes. Whereas animals and robot traversed stiff beams by rolling their body betweenbeam, they pushed across flimsy beams, suggesting a concept of terradynamic favorability where modes with easier physical interaction are more likely to occur. Robotic beam traversal revealed that, system state either remains in a favorable mode or transitions to one when energy fluctuation is comparable to the transition barrier. Robotic self-righting transitions occurred similarly and revealed that changing system parameters lowers barriers over which comparable fluctuation can induce transitions. Thetransitionsof animalsin both systems mostly occurred similarly, but sensory feedback may facilitate its beam traversal. Finally, we developed a method to measure animal movement across large spatiotemporal scales in a terrain treadmill.Comment: arXiv admin note: substantial text overlap with arXiv:2006.1271
    • …
    corecore