14,222 research outputs found

    Implementing PRISMA/DB in an OOPL

    Get PDF
    PRISMA/DB is implemented in a parallel object-oriented language to gain insight in the usage of parallelism. This environment allows us to experiment with parallelism by simply changing the allocation of objects to the processors of the PRISMA machine. These objects are obtained by a strictly modular design of PRISMA/DB. Communication between the objects is required to cooperatively handle the various tasks, but it limits the potential for parallelism. From this approach, we hope to gain a better understanding of parallelism, which can be used to enhance the performance of PRISMA/DB.\ud The work reported in this document was conducted as part of the PRISMA project, a joint effort with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)

    Large Scale Parallel Computations in R through Elemental

    Full text link
    Even though in recent years the scale of statistical analysis problems has increased tremendously, many statistical software tools are still limited to single-node computations. However, statistical analyses are largely based on dense linear algebra operations, which have been deeply studied, optimized and parallelized in the high-performance-computing community. To make high-performance distributed computations available for statistical analysis, and thus enable large scale statistical computations, we introduce RElem, an open source package that integrates the distributed dense linear algebra library Elemental into R. While on the one hand, RElem provides direct wrappers of Elemental's routines, on the other hand, it overloads various operators and functions to provide an entirely native R experience for distributed computations. We showcase how simple it is to port existing R programs to Relem and demonstrate that Relem indeed allows to scale beyond the single-node limitation of R with the full performance of Elemental without any overhead.Comment: 16 pages, 5 figure

    Using {\sc top-c} for Commodity Parallel Computing in Cosmic Ray Physics Simulations

    Get PDF
    {\sc top-c} (Task Oriented Parallel C) is a freely available package for parallel computing. It is designed to be easy to learn and to have good tolerance for the high latencies that are common in commodity networks of computers. It has been successfully used in a wide range of examples, providing linear speedup with the number of computers. A brief overview of {\sc top-c} is provided, along with recent experience with cosmic ray physics simulations.Comment: Talk to be presented at the XI International Symposium on Very High Energy Cosmic Ray Interaction

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited
    corecore