4,344 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic Systems

    Full text link
    High-level reasoning can be defined as the capability to generalize over knowledge acquired via experience, and to exhibit robust behavior in novel situations. Such form of reasoning is a basic skill in humans, who seamlessly use it in a broad spectrum of tasks, from language communication to decision making in complex situations. When it manifests itself in understanding and manipulating the everyday world of objects and their interactions, we talk about common sense or commonsense reasoning. State-of-the-art AI systems don't possess such capability: for instance, Large Language Models have recently become popular by demonstrating remarkable fluency in conversing with humans, but they still make trivial mistakes when probed for commonsense competence; on a different level, performance degradation outside training data prevents self-driving vehicles to safely adapt to unseen scenarios, a serious and unsolved problem that limits the adoption of such technology. In this paper we propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components. We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications

    Interpretable Neural PDE Solvers using Symbolic Frameworks

    Full text link
    Partial differential equations (PDEs) are ubiquitous in the world around us, modelling phenomena from heat and sound to quantum systems. Recent advances in deep learning have resulted in the development of powerful neural solvers; however, while these methods have demonstrated state-of-the-art performance in both accuracy and computational efficiency, a significant challenge remains in their interpretability. Most existing methodologies prioritize predictive accuracy over clarity in the underlying mechanisms driving the model's decisions. Interpretability is crucial for trustworthiness and broader applicability, especially in scientific and engineering domains where neural PDE solvers might see the most impact. In this context, a notable gap in current research is the integration of symbolic frameworks (such as symbolic regression) into these solvers. Symbolic frameworks have the potential to distill complex neural operations into human-readable mathematical expressions, bridging the divide between black-box predictions and solutions.Comment: Accepted to the NeurIPS 2023 AI for Science Workshop. arXiv admin note: text overlap with arXiv:2310.1976

    Information Processing, Computation and Cognition

    Get PDF
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both ā€“ although others disagree vehemently. Yet different cognitive scientists use ā€˜computationā€™ and ā€˜information processingā€™ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism and connectionism/computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debatesā€™ empirical aspects

    Monte Carlo studies of the properties of the Majorana quantum error correction code: is self-correction possible during braiding?

    Get PDF
    The Majorana code is an example of a stabilizer code where the quantum information is stored in a system supporting well-separated Majorana Bound States (MBSs). We focus on one-dimensional realizations of the Majorana code, as well as networks of such structures, and investigate their lifetime when coupled to a parity-preserving thermal environment. We apply the Davies prescription, a standard method that describes the basic aspects of a thermal environment, and derive a master equation in the Born-Markov limit. We first focus on a single wire with immobile MBSs and perform error correction to annihilate thermal excitations. In the high-temperature limit, we show both analytically and numerically that the lifetime of the Majorana qubit grows logarithmically with the size of the wire. We then study a trijunction with four MBSs when braiding is executed. We study the occurrence of dangerous error processes that prevent the lifetime of the Majorana code from growing with the size of the trijunction. The origin of the dangerous processes is the braiding itself, which separates pairs of excitations and renders the noise nonlocal; these processes arise from the basic constraints of moving MBSs in 1D structures. We confirm our predictions with Monte Carlo simulations in the low-temperature regime, i.e. the regime of practical relevance. Our results put a restriction on the degree of self-correction of this particular 1D topological quantum computing architecture.Comment: Main text: 20 pages, Supplementary Material: 66 pages. Short version: arXiv:1505.0371
    • ā€¦
    corecore