7,841 research outputs found

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Theoretical and Computational Basis for CATNETS - Annual Report Year 3

    Get PDF
    In this document the developments in defining the computational and theoretical framework for economical resource allocation are described. Accordingly the formal specification of the market mechanisms, bidding strategies of the involved agents and the integration of the market mechanisms into the simulator were refined. --Grid Computing

    Extended resource management using client classification and economic enhancements

    Get PDF
    Commercialization of Grid resources will become more and more important as utility computing and the deployment of Grids gains momentum. This results in the necessity to not only base Grid components on technical aspects, but also to include economical aspects in their design. This paper presents a framework that links technical and economical aspects to the management of computational resources. Economic enhancements like dynamic pricing and client classification are introduced based on a technical resource management environment and positioned within this resulting in a proposed architecture for an Economically Enhanced Resource Manager (EERM). The introduced approach is evaluated considering various economic design criteria and example scenarios.Postprint (published version

    A Semantic Grid Oriented to E-Tourism

    Full text link
    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.Comment: 12 PAGES, 7 Figure

    Genetic Algorithm-based Mapper to Support Multiple Concurrent Users on Wireless Testbeds

    Full text link
    Communication and networking research introduces new protocols and standards with an increasing number of researchers relying on real experiments rather than simulations to evaluate the performance of their new protocols. A number of testbeds are currently available for this purpose and a growing number of users are requesting access to those testbeds. This motivates the need for better utilization of the testbeds by allowing concurrent experimentations. In this work, we introduce a novel mapping algorithm that aims to maximize wireless testbed utilization using frequency slicing of the spectrum resources. The mapper employs genetic algorithm to find the best combination of requests that can be served concurrently, after getting all possible mappings of each request via an induced sub-graph isomorphism stage. The proposed mapper is tested on grid testbeds and randomly generated topologies. The solution of our mapper is compared to the optimal one, obtained through a brute-force search, and was able to serve the same number of requests in 82.96% of testing scenarios. Furthermore, we show the effect of the careful design of testbed topology on enhancing the testbed utilization by applying our mapper on a carefully positioned 8-nodes testbed. In addition, our proposed approach for testbed slicing and requests mapping has shown an improved performance in terms of total served requests, about five folds, compared to the simple allocation policy with no slicing.Comment: IEEE Wireless Communications and Networking Conference (WCNC) 201
    corecore