9 research outputs found

    Integrating defeasible argumentation and machine learning techniques : Preliminary report

    Get PDF
    The field of machine learning (ML) is concerned with the question of how to construct algorithms that automatically improve with experience. In recent years many successful ML applications have been developed, such as datamining programs, information-filtering systems, etc. Although ML algorithms allow the detection and extraction of interesting patterns of data for several kinds of problems, most of these algorithms are based on quantitative reasoning, as they rely on training data in order to infer so-called target functions. In the last years defeasible argumentation has proven to be a sound setting to formalize common-sense qualitative reasoning. This approach can be combined with other inference techniques, such as those provided by machine learning theory. In this paper we outline different alternatives for combining defeasible argumentation and machine learning techniques. We suggest how different aspects of a generic argumentbased framework can be integrated with other ML-based approaches.Eje: Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI

    Integrating defeasible argumentation and machine learning techniques : Preliminary report

    Get PDF
    The field of machine learning (ML) is concerned with the question of how to construct algorithms that automatically improve with experience. In recent years many successful ML applications have been developed, such as datamining programs, information-filtering systems, etc. Although ML algorithms allow the detection and extraction of interesting patterns of data for several kinds of problems, most of these algorithms are based on quantitative reasoning, as they rely on training data in order to infer so-called target functions. In the last years defeasible argumentation has proven to be a sound setting to formalize common-sense qualitative reasoning. This approach can be combined with other inference techniques, such as those provided by machine learning theory. In this paper we outline different alternatives for combining defeasible argumentation and machine learning techniques. We suggest how different aspects of a generic argumentbased framework can be integrated with other ML-based approaches.Eje: Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI

    Combining counterpropagation neural networks and defeasible logic programming for text classification

    Get PDF
    The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.Eje: Sistemas de información y MetaheurísticaRed de Universidades con Carreras en Informática (RedUNCI

    Combining counterpropagation neural networks and defeasible logic programming for text classification

    Get PDF
    The increasing growth of documents available in the World Wide Web has resulted in a difficult situation for those end-users who search for a particular piece of information. A common approach to facilitate search is to perform document classification first, learning the topology of a document base as a set of clusters. Clusters will be labeled as relevant or irrelevant, and determining whether a new document belongs to a given cluster can help determine whether such document corresponds to the user information needs. We contend that the above clustering technique can be enriched by additional filtering criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we discuss a combination of Counterpropagation Neural Networks for clustering and DeLP to solve the problem of classifying documents according to user-specified criteria. We present an example of how the proposed approach works.Eje: Sistemas de información y MetaheurísticaRed de Universidades con Carreras en Informática (RedUNCI

    Argument based machine learning

    Get PDF
    AbstractWe present a novel approach to machine learning, called ABML (argumentation based ML). This approach combines machine learning from examples with concepts from the field of argumentation. The idea is to provide expert's arguments, or reasons, for some of the learning examples. We require that the theory induced from the examples explains the examples in terms of the given reasons. Thus arguments constrain the combinatorial search among possible hypotheses, and also direct the search towards hypotheses that are more comprehensible in the light of expert's background knowledge. In this paper we realize the idea of ABML as rule learning. We implement ABCN2, an argument-based extension of the CN2 rule learning algorithm, conduct experiments and analyze its performance in comparison with the original CN2 algorithm

    Evaluating the Impact of Defeasible Argumentation as a Modelling Technique for Reasoning under Uncertainty

    Get PDF
    Limited work exists for the comparison across distinct knowledge-based approaches in Artificial Intelligence (AI) for non-monotonic reasoning, and in particular for the examination of their inferential and explanatory capacity. Non-monotonicity, or defeasibility, allows the retraction of a conclusion in the light of new information. It is a similar pattern to human reasoning, which draws conclusions in the absence of information, but allows them to be corrected once new pieces of evidence arise. Thus, this thesis focuses on a comparison of three approaches in AI for implementation of non-monotonic reasoning models of inference, namely: expert systems, fuzzy reasoning and defeasible argumentation. Three applications from the fields of decision-making in healthcare and knowledge representation and reasoning were selected from real-world contexts for evaluation: human mental workload modelling, computational trust modelling, and mortality occurrence modelling with biomarkers. The link between these applications comes from their presumptively non-monotonic nature. They present incomplete, ambiguous and retractable pieces of evidence. Hence, reasoning applied to them is likely suitable for being modelled by non-monotonic reasoning systems. An experiment was performed by exploiting six deductive knowledge bases produced with the aid of domain experts. These were coded into models built upon the selected reasoning approaches and were subsequently elicited with real-world data. The numerical inferences produced by these models were analysed according to common metrics of evaluation for each field of application. For the examination of explanatory capacity, properties such as understandability, extensibility, and post-hoc interpretability were meticulously described and qualitatively compared. Findings suggest that the variance of the inferences produced by expert systems and fuzzy reasoning models was higher, highlighting poor stability. In contrast, the variance of argument-based models was lower, showing a superior stability of its inferences across different system configurations. In addition, when compared in a context with large amounts of conflicting information, defeasible argumentation exhibited a stronger potential for conflict resolution, while presenting robust inferences. An in-depth discussion of the explanatory capacity showed how defeasible argumentation can lead to the construction of non-monotonic models with appealing properties of explainability, compared to those built with expert systems and fuzzy reasoning. The originality of this research lies in the quantification of the impact of defeasible argumentation. It illustrates the construction of an extensive number of non-monotonic reasoning models through a modular design. In addition, it exemplifies how these models can be exploited for performing non-monotonic reasoning and producing quantitative inferences in real-world applications. It contributes to the field of non-monotonic reasoning by situating defeasible argumentation among similar approaches through a novel empirical comparison

    Integrating Defeasible Argumentation and Machine Learning Techniques (Preliminary Report)

    No full text
    The field of machine learning (ML) is concerned with the question of how to construct algorithms that automatically improve with experience. In recent years many successful ML applications have been developed, such as datamining programs, information-filtering systems, etc. Although ML algorithms allow the detection and extraction of interesting patterns of data for several kinds of problems, most of these algorithms are based on quantitative reasoning, as they rely on training data in order to infer so-called target functions. In the last years defeasible argumentation has proven to be a sound setting to formalize common-sense qualitative reasoning. This approach can be combined with other inference techniques, such as those provided by machine learning theory. In this paper we outline different alternatives for combining defeasible argumentation and machine learning techniques. We suggest how different aspects of a generic argumentbased framework can be integrated with other ML-based approaches. 1 Introduction an
    corecore