
Combining Counterpropagation Neural Networks and
Defeasible Logic Programming for Text Classification

Sergio Alejandro Gómez†,1 Carlos Iván Chesñevar‡

†Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)2

Depto. de Ciencias e Ingenieŕıa de la Computación — Universidad Nacional del Sur
Av. Alem 1253 – B8000CPB Bah́ıa Blanca – Argentina

Tel/Fax: (+54) (291) 459 5135/5136 – Email: sag@cs.uns.edu.ar

‡Grupo de Investigación en Inteligencia Artificial
Departament d’Informàtica — Universitat de Lleida

Campus Cappont – C/Jaume II, 69 – E-25001 Lleida, Spain
Tel/Fax: (+34) (973) 70 2764 / 2702 – Email: cic@eup.udl.es

Abstract

The increasing growth of documents available in the World Wide Web has resulted in
a difficult situation for those end-users who search for a particular piece of information. A
common approach to facilitate search is to perform document classification first, learning
the topology of a document base as a set of clusters. Clusters will be labeled as relevant
or irrelevant, and determining whether a new document belongs to a given cluster can
help determine whether such document corresponds to the user information needs.

We contend that the above clustering technique can be enriched by additional filtering
criteria specified in terms of Defeasible Logic Programming (DeLP). In this paper we
discuss a combination of Counterpropagation Neural Networks for clustering and DeLP
to solve the problem of classifying documents according to user-specified criteria. We
present an example of how the proposed approach works.

Keywords: Artificial Intelligence, Machine Learning, Defeasible Argumentation, Counterprop-
agation neural networks, text mining.

1 Introduction and Motivations

The increasing growth of documents available in the World Wide Web has resulted in a diffi-
cult situation for those end-users who search for a particular piece of information. Although
search engines provide a useful tool for document retrieval, such procedure is typically based
on keyword matching to the elements of a document base. However, the existence (resp., inex-
istence) of some keyword in some document does not necessarily guarantee the relevance (resp.,
irrelevance) of the latter with respect to the user’s information needs.

A common approach to facilitate search is to perform document classification first, learning
the topology of a document base as a set of clusters. Clusters will be labeled as relevant
or irrelevant, and determining whether a new document belongs to a given cluster can help
determine whether such document corresponds to the user information needs.

In many situations, reasoning with clusters involves complex relationships (e.g. overlapping
among clusters), so that commonsense reasoning techniques are required in order to refine the
search. Defeasible argumentation provides a useful formalization for commonsense reasoning
which has been used in many real-world applications. We contend that such clustering technique

1Partially supported by the Agencia Nacional de Promoción Cient́ıfica y Tecnológica (PICT 2002 Nro 13096).
2LIDIA is a member of IICyTI Instituto de Investigación en Ciencia y Tecnoloǵıa Informática.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


can be enriched by additional filtering criteria specified in terms of a defeasible argumentation
formalism, namely Defeasible Logic Programming (DeLP).

In this article we discuss the problem of document classification by a combination of a
Counterpropagation neural network (CPN) model and Defeasible Logic Programming (DeLP).
This article characterizes part of a current research in which we are investigating the integration
of machine learning and defeasible argumentation techniques (see for instance [6, 5, 8, 7]). The
rest of the paper is structured as follows. First in Section 2 the fundamentals of DeLP and CPN
are introduced. Then in Section 3 we discuss how to carry out document classification in terms
of a combination of a Counterpropagation neural network trained on a set of documents and a
domain theory characterized in terms of DeLP. Finally Section 4 discusses the main conclusions
that have been obtained and outlines some future research work.

2 Background

Next we will briefly summarize the basic elements of defeasible logic programming and counter-
propagation neural networks. For a detailed treatment the reader is referred to the literature
cited on these topics.

2.1 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [4] provides a language for knowledge representation and
reasoning that uses defeasible argumentation [9, 2] to decide between contradictory conclusions
through a dialectical analysis. Codifying knowledge by means of a DeLP program provides
a good trade-off between expressivity and implementability. Recent research has shown that
DeLP provides a suitable framework for building real-world applications (e.g. clustering algo-
rithms [7] and intelligent web search [1]) that deal with incomplete and potentially contradictory
information.

In a defeasible logic program P = (Π, ∆), a set ∆ of defeasible p −≺ q1, . . . , qn, and a set Π
of strict rules p ← q1, . . . , qn can be distinguished. An argument 〈A, h〉 is a minimal non-
contradictory set of ground defeasible clauses A of ∆ that allows to derive a ground literal h
possibly using ground rules of Π. Since arguments may be in conflict (concept captured in terms
of a logical contradiction), an attack relationship between arguments can be defined. A criterion
is usually defined to decide which argument of two conflicting arguments is preferred.In order
to determine whether a given argument A is ultimately undefeated (or warranted), a dialectical
process is recursively carried out. Given a DeLP program P and a query h, the final answer to
h wrt P takes such dialectical analysis into account.

2.2 Counterpropagation Neural Networks

The counterpropagation neural network (CPN) [10] learns a mapping xi �→ f(xi) from a n-
dimensional space to a m-dimensional space for a set of example pattern vectors {(x1, f(x1)), . . . ,
(xn, f(xn))}. The general architecture of the CPN has three layers: an input layer composed of
a number of fan-out units; one hidden or Kohonen layer, containing a set of competitive units,
and a linear output or Grossberg layer.

The CPN learns to produce f(xi) given xi by adapting the weight vectors according to
the following learning rule: wu(t + 1) = wu(t) + α(xi − wu(t + 1)), where u corresponds to the
Kohonen winner unit. The winner unit u is selected using some similarity metric. The Kohonen
layer is first trained to develop a characterization of the input xi in terms of a set of clusters.



The Grossberg layer is then trained, learning an average prototype for each hidden or Kohonen
unit.

At explotation time, given an input pattern vector x, the most alike unit u is selected
by comparing x to each unit prototype and selecting the most similar. Then the Grossberg
prototype associated to u is then returned. The latter is considered as f(x).

3 Relating Counterpropagation Neural Networks and DeLP for Text
Classification

In this section we will discuss an approach for combining a counterpropagation neural network
and a defeasible logic program for text document classification. In the sequel we will use HTML
as the underlying model for text documents, although the same approach could be applied to
any other Web-based text language which provides tags (e.g. XML, etc.).

3.1 Document Representation

The HTML model lets authors specify meta data (i.e., information about the document itself
rather than document content) through the use of META tags. For example:

<META Name=”Author” Lang=”sp” Content=”Jorge Luis Borges”>

<META Name=”Title” Content=”El General Quiroga va en coche al muere”>

<META Name=”Keywords” Lang=”sp” Content=”poema, Quiroga, muere”>

<META Name=”Date” Content=”12/04/1986”>

Note that here the META elements provide information about the author’s name, document
title, keywords, date, etc. In order to use a document D as an input pattern for a counter-
propagation neural network, an internal representation for the document has to be adopted
[3]. A vector space representation can be used modeling each document di by a feature vector
〈k1

i , . . . , k
n
i 〉 of user-provided keywords. Together with this representation we are going to sup-

pose that a numerical rank ri is given by the user for each document di, regarding a degree of
the document relevance wrt his information needs. We will also assume that the rank belongs
to the real interval [0, 1], and the greater the rank, the greater the relevance of the document.

3.2 Modeling the Neural Network Output in DeLP

A counterpropagation neural network C will be trained over a set of documents, and will be
used for inducing a mapping from that set of documents into real numbers, such that, given a
(possibly) previously unseen document, the network C will be capable of providing a guess on
the document relevance wrt the user’s information needs.

We want to encode information from the neural network in a DeLP setting. To do so, we
will provide an interface in terms of a DeLP program with built-in predicates which invoke
computations based on the neural network C. For example:

relevant(D) −≺ rank(D, R), R ≥ 0.5
∼ relevant(D) −≺ rank(D, R), R < 0.5
rank(D, R) ← kohonen(D, U), grossberg(U, R)

Here we assume the document D is relevant if the rank R assigned to it by the neural network
is greater than or equal to 0.5 and that is irrelevant otherwise. The predicates kohonen(D, U)
and grossberg(U, R) model the internal network behavior. The predicate kohonen(D, U) re-
trieves the winner unit U associated to D in the neural net self-organizing Kohonen layer. The
predicate grossberg(U, R) retrieve the rank R calculated by the neural net Grossberg layer.



3.3 Providing User Filtering Criteria in DeLP

The previous analysis corresponds to a rather direct translation from the behavior of the un-
derlying neural networks into characterizing relevance. Other, more involved filtering criteria
can be extend the previous one, e.g. by adding the following rules:

relevant(D) −≺ author(D, borges)
∼ relevant(D) −≺ keyword(D, poetry)
∼ relevant(D) −≺ old(D)
old(D) −≺ date(D, DMY ), before(DMY,“01/01/1990”)

The above rules specify that a document D is relevant if its author is Borges but it is irrelevant
(or not relevant) if the document is about poetry. Besides the document D is also considered
irrelevant if it is old, that is, its date is previous to January 1990. This information is gathered
by the predicates author(D, A), keyword(D, K), date(D, DMY ) that take into account the
corresponding document META keyword.

3.4 Classifying Documents Through a Dialectical Analysis

From the above example we can see that user-provided criteria can be contradictory. In order to
classify a previously unseen document d a dialectical analysis is needed, and will be performed
automatically by the DeLP engine. In the process the DeLP engine will first try to warrant
an argument 〈A, relevant(d)〉, supporting to the conclusion that the document is relevant. If
the former could not be warranted, then the DeLP engine will try to warrant the opposite
argument, that is 〈A,∼ relevant(d)〉, which supports the opposite.

For the sake of example we will consider some arguments that can be derived in the above
context. Given a document d containing a poem written by Jorge Luis Borges, there are two
conflicting arguments that can be built from the DeLP program above, namely 〈A1, relevant(d)〉
and 〈A2,∼ relevant(d)〉, where

A1 = {relevant(d)−≺author(d, borges)}
A2 = {∼ relevant(d1)−≺keyword(d, poem)}

Let us also suppose that a CPN C trained on a sample document set is also used in the
classification of this document d. Let us assume that according to C the rank r of d is greater
than or equal to 0.5. In that case another argument 〈A3, relevant(d)〉 supporting the relevance
of d can be built3, where A3 = {relevant(d)−≺rank(d, r), r ≥ 0.5}. Similarly, the argument
〈A4,∼ relevant(d)〉 supporting the irrelevance of document d can be derived too, where:

A4 = {(∼ relevant(d)−≺old(d)),
(old(d)−≺date(d,“12/04/1986”), before(“12/04/1986”, “01/01/1990”))}

As illustrated above, several conflicting arguments can be obtained from the same set of pref-
erence criteria (DeLP program), so that a dialectical analysis is needed in order to determine
which arguments are to be ultimately preferred. Such analysis is automatically carried out by
DeLP. As pointed out in [9, 4] it must be noted that comparison criterion among arguments is
modular, and can be defined in several ways, being independent from the inference procedure
for computing warranted arguments.

4 Conclusions and Future Work

In this paper we have outlined how neural networks can be integrated into a DeLP setting in
order to perform text classification. The proposed hybrid approach combines the features of

3An argument against the document relevance could have also been built if the rank r of d1 had been less
than 0.5.



CPN to obtain clusters from vectors characterizing text documents together with the capabilities
of DeLP for performing commonsense reasoning. As we have shown in this paper, the existence
of conflicting user preferences can be captured in terms of a dialectical analysis, automatically
performed by the DeLP inference engine.

It must be remarked that the approach presented in this paper can be seen as a particular
case of how frameworks for defeasible argumentation can be integrated them machine learning
techniques. Part of our current research work involves testing the ideas presented in this paper
on some sample document collections, using different user-defined criteria encoded as DeLP
programs.

Acknowledgements

Research partially supported by Projects CICYT TIC2001-1577-C03-03, TIC2003-00950 and Ramón
y Cajal Program funded by the Ministerio de Ciencia y Tecnoloǵıa (Spain).

References

[1] C. Chesñevar and A. Maguitman. ArgueNet: An Argument-Based Recommender System for
Solving Web Search Queries. In Proc. of Intl. IEEE Conference on Intelligent Systems IS-2004
(to appear), June 2004.

[2] Carlos Iván Chesñevar, Ana Maguitman, and Ronald Loui. Logical Models of Argument. ACM
Computing Surveys, 32(4):337–383, December 2000.

[3] R. Frakes, W.; Baeza-Yates. Information Retrieval. Data Structures & Algorithms. Prentice Hall,
1992.

[4] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible Logic Programming: An Argumentative
Approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.

[5] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Combining Argumentation and Clustering
Techniques in Pattern Classification Problems. In Proc. of the IX Argentinian Conference in
Computer Science (CACIC 2003), pages 601–612, 2003.

[6] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Integrating Defeasible Argumentation and
Machine Learning Techniques: A Preliminary Report. In Proc. of the V Workshop of Researchers
in Computer Science (WICC 2003), pages 320–324, 2003.

[7] Sergio Alejandro Gómez and Carlos Iván Chesñevar. A Hybrid Approach to Pattern Classifica-
tion Using Neural Networks and Defeasible Argumentation. In The 17th International FLAIRS
Conference, Palm Beach, Florida,USA, May 2004.

[8] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Integrating Defeasible Argumentation with
Fuzzy ART Neural Networks for Pattern Classification. In Journal of Computer Science and
Technology, volume 4(1), April 2004.

[9] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning
and its Implementation. Artificial Intelligence, 53:125–157, 1992.

[10] David Skapura. Building Neural Networks. ACM Press, Addison-Wesley, 1996.


