3 research outputs found

    The Issues And Solutions Of Integrating DBMS To A Multi-DBMS

    Get PDF
    Many organizations invest heavily in heterogeneous databases according to organizational functions. These heterogeneous databases are stand-alone systems that do not interact with one another. The objective of this paper is to introduce a multi-database system (MDBMS) that interacts with other heterogeneous DBMS within the organization to integrate information processing. In this paper, we discuss the potential inconsistencies in integrating heterogeneous databases. We further extend to include issues in designing a MDBMS. With a MDBMS, data sharing across organization reduces overheads and costs, thus, provides a competitive advantage to the global firms

    Web Information Systems: Usage, Content, and Functionally Modelling

    Get PDF
    The design of large-scale data-intensive web information systems (WIS) requires a clear picture of the intended users and their behaviour in using the system, a support of various access channels and the technology used with them, and an integration of traditional methods for the design of data-intensive information systems with new methods that address the challenges arising from the web-presentation and the open access. This paper presents the conceptual modelling parts of a methodology for the design of WISs that is based on an abstract abstraction layer model (ALM). It concentrates on the two most important layers in this model: a business layer and a conceptual layer. The major activities on the business layer deal with user profiling and storyboarding, which addresses the design of an underlying application story. The core of such a story can be expressed by a directed multi-graph, in which the vertices represent scenes and the edges actions by the users including navigation. This leads to story algebras which can then be used to personalise the WIS to the needs of a user with a particular profile. The major activities on the conceptual layer address the support of scenes by modelling media types, which combine links to databases via extended views with the generation of navigation structures, operations supporting the activities in the storyboard, hierarchical presentations, and adaptivity to users, end-devices and channels. Adding presentation style options this can be used to generate the web-pages that will be presented to the WIS users

    Formal design of data warehouse and OLAP systems : a dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems at Massey University, Palmerston North, New Zealand

    Get PDF
    A data warehouse is a single data store, where data from multiple data sources is integrated for online business analytical processing (OLAP) of an entire organisation. The rationale being single and integrated is to ensure a consistent view of the organisational business performance independent from different angels of business perspectives. Due to its wide coverage of subjects, data warehouse design is a highly complex, lengthy and error-prone process. Furthermore, the business analytical tasks change over time, which results in changes in the requirements for the OLAP systems. Thus, data warehouse and OLAP systems are rather dynamic and the design process is continuous. In this thesis, we propose a method that is integrated, formal and application-tailored to overcome the complexity problem, deal with the system dynamics, improve the quality of the system and the chance of success. Our method comprises three important parts: the general ASMs method with types, the application tailored design framework for data warehouse and OLAP, and the schema integration method with a set of provably correct refinement rules. By using the ASM method, we are able to model both data and operations in a uniform conceptual framework, which enables us to design an integrated approach for data warehouse and OLAP design. The freedom given by the ASM method allows us to model the system at an abstract level that is easy to understand for both users and designers. More specifically, the language allows us to use the terms from the user domain not biased by the terms used in computer systems. The pseudo-code like transition rules, which gives the simplest form of operational semantics in ASMs, give the closeness to programming languages for designers to understand. Furthermore, these rules are rooted in mathematics to assist in improving the quality of the system design. By extending the ASMs with types, the modelling language is tailored for data warehouse with the terms that are well developed for data-intensive applications, which makes it easy to model the schema evolution as refinements in the dynamic data warehouse design. By providing the application-tailored design framework, we break down the design complexity by business processes (also called subjects in data warehousing) and design concerns. By designing the data warehouse by subjects, our method resembles Kimball's "bottom-up" approach. However, with the schema integration method, our method resolves the stovepipe issue of the approach. By building up a data warehouse iteratively in an integrated framework, our method not only results in an integrated data warehouse, but also resolves the issues of complexity and delayed ROI (Return On Investment) in Inmon's "top-down" approach. By dealing with the user change requests in the same way as new subjects, and modelling data and operations explicitly in a three-tier architecture, namely the data sources, the data warehouse and the OLAP (online Analytical Processing), our method facilitates dynamic design with system integrity. By introducing a notion of refinement specific to schema evolution, namely schema refinement, for capturing the notion of schema dominance in schema integration, we are able to build a set of correctness-proven refinement rules. By providing the set of refinement rules, we simplify the designers's work in correctness design verification. Nevertheless, we do not aim for a complete set due to the fact that there are many different ways for schema integration, and neither a prescribed way of integration to allow designer favored design. Furthermore, given its °exibility in the process, our method can be extended for new emerging design issues easily
    corecore