
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

https://core.ac.uk/display/148635661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal Design of Data Warehouse and OLAP Systems

A dissertation presented in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
in

Information Systems

at Massey University, Palmerston North, New Zealand

Jane Qiong Zhao

2007

Abstract

A data warehouse is a single data store, where data from multiple data sources is integrated
for online business analytical processing (OLAP) of an entire organisation. The rationale being
single and integrated is to ensure a consistent view of the organisational business performance
independent from different angels of business perspectives. Due to its wide coverage of sub-
jects, data warehouse design is a highly complex, lengthy and error-prone process. Furthermore,
the business analytical tasks change over time, which results in changes in the requirements
for the OLAP systems. Thus, data warehouse and OLAP systems are rather dynamic and the
design process is continuous. In this thesis, we propose a method that is integrated, formal
and application-tailored to overcome the complexity problem, deal with the system dynamics,
improve the quality of the system and the chance of success.

Our method comprises three important parts: the general ASMs method with types, the
application tailored design framework for data warehouse and OLAP, and the schema integration
method with a set of provably correct refinement rules.

By using the ASM method, we are able to model both data and operations in a uniform
conceptual framework, which enables us to design an integrated approach for data warehouse
and OLAP design. The freedom given by the ASM method allows us to model the system at
an abstract level that is easy to understand for both users and designers. More specifically,
the language allows us to use the terms from the user domain not biased by the terms used
in computer systems. The pseudo-code like transition rules, which gives the simplest form of
operational semantics in ASMs, give the closeness to programming languages for designers to
understand. Furthermore, these rules are rooted in mathematics to assist in improving the
quality of the system design.

By extending the ASMs with types, the modelling language is tailored for data warehouse
with the terms that are well developed for data-intensive applications, which makes it easy to
model the schema evolution as refinements in the dynamic data warehouse design.

By providing the application-tailored design framework, we break down the design complexity
by business processes (also called subjects in data warehousing) and design concerns. By de-
signing the data warehouse by subjects, our method resembles Kimball’s “bottom-up”approach.
However, with the schema integration method, our method resolves the stovepipe issue of the
approach. By building up a data warehouse iteratively in an integrated framework, our method
not only results in an integrated data warehouse, but also resolves the issues of complexity and
delayed ROI (Return On Investment) in Inmon’s “top-down” approach. By dealing with the user
change requests in the same way as new subjects, and modelling data and operations explicitly
in a three-tier architecture, namely the data sources, the data warehouse and the OLAP (online
Analytical Processing), our method facilitates dynamic design with system integrity.

By introducing a notion of refinement specific to schema evolution, namely schema refine-
ment, for capturing the notion of schema dominance in schema integration, we are able to build
a set of correctness-proven refinement rules. By providing the set of refinement rules, we sim-
plify the designers’s work in correctness design verification. Nevertheless, we do not aim for
a complete set due to the fact that there are many different ways for schema integration, and
neither a prescribed way of integration to allow designer favored design.

Furthermore, given its flexibility in the process, our method can be extended for new emerging
design issues easily.

iii

Acknowledgement

My sincere and huge thanks go to my supervisor Prof. Klaus-Dieter Schewe for all the
guidance and support that he has given me generously during my study.

My thanks also goes to my co-supervisor Associate Prof. Roland Kaschek for his
critical discussions on this work.

I am grateful towards my parents for their constant love and care, and the great help
in looking after my children.

Finally my thanks to my partner, Henning Köhler, and my two beautiful and lovely
daughters, Angela and Nicole, for their love and support which made my life meaningful
and enjoyable.

It would be impossible for the completion of this work without any of the help from
the people mentioned and the people around me.

v

Contents

1 Introduction 5
1.1 Contributions . 8
1.2 Outline . 9

2 Literature Review 11
2.1 Data Warehouse and OLAP Systems Design 11

2.1.1 Design Methods . 11
2.1.2 Data Warehouse Evolution . 17

2.2 Schema Integration . 19
2.3 Software System Development Methods . 20

2.3.1 Process Oriented Methods - a Brief Introduction 21
2.3.2 Formal Methods . 21
2.3.3 Application of Formal methods . 23

2.4 Summary . 23

3 Abstract State Machines 25
3.1 The Notion of ASMs . 25
3.2 Mathematical Definition of ASMs . 26

3.2.1 Abstract States . 26
3.2.2 Transition Rules and Runs . 28
3.2.3 The Reserve of ASMs . 32

3.3 ASM Modules . 32
3.4 Distributed ASMs . 33
3.5 The Ground Model Method . 34

3.5.1 The Properties of the Ground Model 34
3.5.2 Three Problems in Formulation . 35
3.5.3 ASMs for the Formalisation Problems 35
3.5.4 An Example of Ground Model . 36

3.6 The ASM Refinement Method . 37
3.6.1 The Notion of Refinement . 37
3.6.2 The Refinement Patterns . 38
3.6.3 Correctness Proofs . 39
3.6.4 Notions of Refinement: A Comparison with ASM refinement 41

4 Typed Abstract State Machines 43
4.1 A Type System . 43
4.2 Signatures and States . 45
4.3 Transition Rules . 46
4.4 Terms . 47

1

Jane Qiong Zhao CONTENTS

4.5 Bulk Updates . 48
4.6 Schema Refinement in TASM . 49
4.7 An Equivalence Result . 51

5 Data Warehouse Design Using the ASM Method 53
5.1 The Data Warehouse Ground Model . 54

5.1.1 The Operational Database ASM . 54
5.1.2 The Data Warehouse ASM . 55
5.1.3 The OLAP ASM . 57
5.1.4 The Grocery Store Data Warehouse - a Simple Example 60
5.1.5 The Ground Model in TASM . 65
5.1.6 Reasoning about the ASM Ground Model 68

5.2 The Refinement-based Design Framework 69
5.2.1 Requirements Capture . 70
5.2.2 Optimisation . 71
5.2.3 Implementation . 72

5.3 Some Refinements . 73
5.3.1 Incorporating Roll-up and Drill-down 73
5.3.2 Materialising OLAP Views . 75
5.3.3 Incremental Updates . 77

6 View Integration 83
6.1 HERM . 83
6.2 Query Languages for HERM . 86
6.3 Schema Dominance and Equivalence . 88
6.4 Schema and View Integration Process . 89
6.5 Transformation Rules . 90

6.5.1 Schema Restructuring . 91
6.5.2 Shifting Attributes . 99
6.5.3 Schema Extension . 104
6.5.4 Type Integration. 108
6.5.5 Handling Integrity Constraints. 113

6.6 Dialogue Types . 120
6.7 Transformation Rules for Dialogue Types 121

7 Case Studies 123
7.1 Adding a New Data Mart . 123

7.1.1 Example: CRM for Grocery Store 123
7.1.2 Incorporate CRM . 124

7.2 Dynamic Data Warehouse Design . 133
7.2.1 Cost and benefit Model . 133
7.2.2 View Selection Process . 134
7.2.3 Application Cases . 135

7.3 Distribution Design . 138
7.3.1 Architecture of Distributed Data Warehouses 138
7.3.2 Fragmentation . 139
7.3.3 Query and Maintenance Cost . 140
7.3.4 Recombination of Fragments . 141
7.3.5 Distribution design for a Grocery Store Data Warehouse 142

2

CONTENTS Jane Qiong Zhao

7.4 Application of Business Statistics . 148
7.4.1 Single Linear Regression and Correlations 148
7.4.2 Time Series Analysis . 150

8 Conclusion 152

3

List of Figures

3.1 The ASM refinement scheme . 38
3.2 data refinement vs. ASM refinement . 42

5.1 The general architecture of a data warehouse and OLAP 54
5.2 The main process in OLAP-ASM . 58
5.3 Schema underlying an OLAP view . 61
5.4 The operational database schema . 62
5.5 The data warehouse schema for sales . 63

6.1 HERM diagram for loan application . 85
6.2 The relationship types before and after application of Rule 9 100
6.3 The relationship types before and after application of Rule 10 101
6.4 The possible path directions . 102
6.5 The relationship types before and after application of Rule 11 103
6.6 The relationship types before and after application of Rule 12 104
6.7 The relationship types before and after application of Rule 14 105
6.8 The relationship types before and after application of Rule 16 107
6.9 The relationship types before and after application of Rule 17 108
6.10 The relationship types before and after application of Rule 18 109
6.11 The relationship types before and after application of Rule 19 110
6.12 The relationship types before and after application of Rule 20 112
6.13 The relationship types before and after application of Rule 21 113
6.14 The relationship types before and after application of Rule 22 114
6.15 The relationship types before and after application of Rule 23 115
6.16 The relationship types before and after application of Rule 24 116
6.17 The relationship types before and after application of Rule 25 117
6.18 The relationship types before and after application of Rule 27 119
6.19 The relationship types before and after application of Rule 28 120

7.1 The data warehouse schema for CRM . 124
7.2 The data warehouse schema after incorporating CRM 127
7.3 The operational DB schema after incorporating CRM 127
7.4 Distributed Data Warehouse Architecture 139

4

Chapter 1

Introduction

A data warehouse is a single data store where data from multiple data sources is integrated
for the purpose of online analytical processing (OLAP) in management decision support
for an entire organisation. The rationale for being single and integrated is to ensure that
the analytical statistics on the organisational performance are consistent and independent
from different angles of business processes. This implies that a data warehouse needs to
store the data for all the different subjects, such as finance, marketing, inventory, and so
on, within the entire organisation. Furthermore, business requirements for OLAP systems
change over time. Data warehouse and OLAP systems thus are rather dynamic and the
design process is continuous.

This view of data warehousing was shared by most of data warehouse designers, specif-
ically, the Data Warehousing Basics channel brought by DM Review and Kalido - the
provider of adaptive enterprise data warehousing and master data management software
[31], which says “As strategic as they are, enterprise data warehousing projects are highly
complex and can be risky. Projects fail almost as much as they succeed, often because
of long development cycles, poor information quality and an inability to adapt quickly to
changing business conditions or requirements.”

In summary, data warehouse and OLAP system design faces the following challenges:

• Overwhelming complexity due to the wide coverage of subjects;

• Error-prone due to the complexity of the process;

• Integrity issues due to the ever-changing user requirements.

Therefore, we need a design method that simplifies the design work, facilitates quality
design, tackles the dynamics and at the same time ensures the integrity of the system.

A review of the literature has shown that due to the complexity of the design process,
work reported so far in data warehouse and OLAP systems design has mainly focused on
solutions which deal with isolated issues, such as:

• view selection, which considers a data warehouse as a set of computed database
queries, i.e. the materialised views, based on the user queries (e.g. [38, 39, 41, 48]);

• the issue of selecting a set of views to materialise against a set of users queries
considering query performance and view maintenance (e.g.[65, 4, 62, 80, 125]);

5

Jane Qiong Zhao CHAPTER 1. INTRODUCTION

• the issue of how to maintain the materialised views when the databases, i.e. the
data sources, change;

• data modelling, which considers data warehouse as a special database system, and
concerns with what data model suits the data warehouse and OLAP (e.g. [5, 116]);

• schema design (e.g. [35, 83]);

• index design (e.g. [40]);

• conceptual design, which concerns with one of the design stages, (e.g. [111]);

• ETL (Extract-Transform-Load), which concerns on getting the the data from the
sources, (e.g. [103]);

• dynamic design, which concerns adapting the design to the changes of user require-
ments (e.g. [109, 37, 61, 64, 9, 79, 19, 58]) and so on.

Development methods in the data warehouse industry such as the “top-down” ap-
proach by Inmon [53], and the “bottom-up” approach by Kimball [58] provide methods
for the whole project life cycle. But both of the approaches have their focus on database
schema design. The issues with the two approaches are well known [102]. The “top-down”
approach is ideal but not practical due to the upfront cost and delayed ROI (return of
investment). Whereas, the “bottom-up” approach has fast turn round but it may have the
problem of system integrity[52]. Kimball uses the idea of conformed dimension to resolve
the issue, but appropriate method and techniques are needed to support or enforce it.

Attempts have been made for constructing integrated and standard methods for the
whole design process, such as in [76, 72]. Although the work in [76], which is close to
our method, provides a MDA (Model Driven Architecture, an Object Management Group
standard) oriented framework for the complete development process, it mainly focuses on
the transformation of the models between the three tiers of the MDA and presents how
multidimensional modelling is adopted using the Multidimensional Model Driven Archi-
tecture approach to produce multidimensional models, i.e. data warehouse schema design.
It is not obvious how models at different layers of the data warehouse architecture are
related, neither is how the system evolution is handled. The work in [72] presents a UML-
based method for deriving a data warehouse from the underlying operational database
following the “top-down” approach. The issues such as design complexity and delayed
“ROI” are not addressed. The issues of UML as a modelling language are well discussed
in [98, 17], among which we consider unclear semantics and unclarity with respect to
abstraction level should particularly be addressed in the UML-based methods. These
methods using UML packages may benefit from its support for an integrated framework,
but without proper technique to attack the aforementioned problems, it may compromises
the quality of the design.

Works dealing with dynamic issues of data warehouse so far are isolated from an
integrated framework. These include reselection of views when the set of user queries
changes, [109, 37, 61, 64], or adapting the data schema to the change of requirements,
using schema evolution [9] or schema versioning [79].

In summary, as stressed in [89], very few comprehensive design methods have been
devised so far. Issues in requirement analysis, schema evolution, distributed data ware-
housing, etc. need proper investigation.

6

Jane Qiong Zhao

My research aims at constructing an integrated design framework with a method for
distributed, dynamic data warehouse and OLAP systems design which overcomes the issue
of complexity and delayed ROI with the “top-down” approach and the issue of integrity
with the “bottom-up” approach, and simplifies the design work, ensures the integrity of
the system, improves the quality of the design and the chance of success.

First of all, we ground our approach in the method of Abstract State Machines (ASMs,
[17]) for its ground model and stepwise refinement approach, which explicitly supports our
view of systems development to start with an initial specification, i.e. the ground model
[14] that is then subject to refinements [15]. So quality criteria such as the satisfaction of
constraints can first be verified for the ground model, while the refinements are defined
in a way that preserves already proven quality statements. In particular, this is assisted
by a set of provably correct refinement rules. This approach is similar to the one taken
in [97], which contains a refinement-based approach to the development of data-intensive
systems using a variant of the B method [1].

Furthermore, the ground model method helps to capture the users’ requirements at
such an abstract level that both domain experts and designers can understand, which
implies that the domain experts can check by inspection if the ground model faithfully
represents the requirements semantically, and the designers will be able to transform it
correctly to an implementation without too much difficulty. The stepwise refinement
method provides a general notion of refinement, which can be instantiated for specific
purposes, e.g. schema refinement and strong schema refinement in our case, and gives
freedom in selecting any proof methods, e.g. methods from other formal approaches, that
work in a specific context, e.g. forward simulation from data refinement [27].

The choice of the ASMs method is made based on the success stories of the ASMs in
many application areas, such as hardware and software architecture, databases, software
engineering, etc. [16, 7, 84, 45, 49]. In particular, the mathematically sound ASM notion
and easy-to-understand pseudo-code like transition rules [12], are reasons for the choice
too. Of course, this does not conclude that other existing formal methods, e.g. Z, B,
VDM, etc. are not capable of fulfilling the same goals. Specifically, many of them have
been successfully used in real industry applications [21, 121], with many books published
(e.g. [29, 33]) and intensive research carried out [20, 21, 32]. In fact, the ASMs method
provides an open framework which allows the techniques from other formal methods to be
borrowed whenever appropriate, e.g. the simulation approach in correctness of refinement
proofs from the data refinement [27] is used in ASM refinement proofs [93].

Secondly, we extend the ASMs with types as we believe it is a good idea to incorporate
types to make it closer to the well-established terminology in data-intensive systems, hence
to make it easier to model the schema evolution by the notion of “schema refinement”, a
notion of refinement to capture “schema dominance”. While there are several approaches
to introducing typed versions of ASMs [28, 124], our rationale for introducing typed
ASMs is far more modest, as our primary goal is to obtain an application-specific version
of ASMs. Although the quality-assurance aspect is an important argument for a formal
development method, there is still an aversion against using a rigid formal approach, in
particular in areas, in which informal development is still quite dominant. So providing
such a version of ASMs, i.e. the typed ASMs, that is easy to use due to the adoption of
more familiar terminology will be a necessary step towards the simplification of systems
development and the desired quality improvement.

Thirdly, we provide an integrated design framework which allows designers to break
down the design process by subjects and design concerns such as new requirements, op-
timisation, and implementation. Our method allows a data warehouse to be built from

7

Jane Qiong Zhao CHAPTER 1. INTRODUCTION

a single subject iteratively. More subjects can be included whenever needed through
the refinement under new requirements. The schema integration step in the method will
integrate the schemata resulting from a new subject with the existing data warehouse
schemata under the notion of schema dominance to preserve the capacity of the informa-
tion and at the same time the integrity of the system. In such way we solve the integrity
issue in the “bottom-up” approach.

By modelling the three tiers architecture, i.e. the data source, the data warehouses,
and the OLAP (Online Analytical Processing), explicitly on both data (data schema) and
operations, our method provides an integrated framework to ensure changes are prop-
agated through the entire system from the OLAP, through the data warehouse, to the
underlying operational database accordingly. In particular, we consider that modelling
the OLAP, the focus of the decision support system, as part of the data warehouse system
is necessary, as this is where the user requirements come from. This is how we can propa-
gate the changes downward to the data warehouse, and then the data sources. Moreover,
modelling the three-tier architecture facilitates the adaptation of changes from the data
sources to the data warehouse as well.

Furthermore, we tackle the dynamics more completely, by schema evolution as in [9],
and by view integration as in [19]. The former is adapted to the design of multidimensional
databases, the later provides a method for materialised view data warehouse, i.e. a set of
pre-computed and stored user queries or a set of commonly shared intermediate results of
the user queries to be used as the data warehouse, whereas our approach is constructed for
the widely used relational databases. In addition, we devise an algorithm for performance
concern too. In that, our approach differs from the work in [109] by considering the case
of adding new materialised views, when it is more beneficial to do so even if the new
queries can be rewritten by the existing views.

Our approach facilitates the design by subject and design concerns which resolves the
issues of complexity and delayed ROI (Return of Investment).

1.1 Contributions

The main contributions of this work are the following:

• We developed a comprehensive method for dynamic data warehouse and OLAP
systems design which covers all the design concerns from the whole design process
specific to data warehouse and OLAP systems design, and models a three-tier archi-
tecture including the data source, the data warehouse, and the OLAP system, and
both data and operations explicitly.

• We simplified the design work by providing a dialect of ASM, the Typed ASM
(TASM), so the well developed terminologies for data-intensive systems can be
adopted easily, which is particularly helpful in modelling schema refinement in the
schema integration.

• We introduced the notion of schema refinement to capture “schema dominance” in
schema integration process, which provides the foundation for constructing the cor-
rect refinement rules for the schema integration rules.

8

1.2. OUTLINE Jane Qiong Zhao

• We constructed an integrated design framework with schema integration method
which resolves the issues of complexity, delayed “ROI” and system integrity in data
warehouse design.

• We developed a set of correctness proven refinement rules based on the notion of
schema refinement and strong schema refinement for the schema integration which
makes it easy for the designers to adopt the formal approach.

• Furthermore we took the performance concern into consideration in dynamic data
warehouse design, by devising a view selection algorithm that overcomes some of the
drawbacks in the existing work.

1.2 Outline

The remainder of the thesis is organised as follows:

Chapter two gives the review of the related work in the areas of data warehouse,
schema integration and formal methods, with respective to system design;

In Chapter three, an detailed description of the Abstract State Machines (ASMs) is
given based on the book [17] including the notions, semantics and syntactic constructs,
and the ASM method;

In Chapter four, the ASMs are extended to incorporate a type system which is par-
ticularly designed for using the terms that are developed for data-intensive applications.
The corresponding rules, terms, operations, and notion of refinements with types are in-
troduced. Furthermore, the notion of schema refinement and the notion of strong schema
refinement for schema integration are defined. A constructive proof on equivalence be-
tween a TASM and an ASM is presented;

In Chapter five, an ASM method-based and integrated framework for the design of
data warehouse and OLAP systems is introduced. We show how the method facilitates
the breaking down the design process by concerns such as new requirements, optimisation
and implementation, and by subjects. The generalised ground model of data warehouse
and OLAP systems is presented in the ASMs. In addition, ground models for a grocery
store, as an example, are presented in both the ASMs and the TASMs. Furthermore,
examples on how the ground model can be used to verify a set properties of the system
are demonstrated, and some refinements specific to data warehouse and OLAP systems
are presented with the refinement correctness proofs;

In Chapter six, we discuss view integration and cooperation as the method to integrate
data warehouse schemata during data warehouse evolution. This includes an introduc-
tion on HERM (Higher-order Entity-Relationship Model) [106], and the notion of schema
dominance and equivalence, and the presentation of a set of schema transformation rules
with some guidelines on the integration process and the formulation of the corresponding

9

Jane Qiong Zhao CHAPTER 1. INTRODUCTION

refinement rules;

In Chapter seven, we present three case studies to show the application of the method
and the refinement rules. These include dynamic system design, distribution design, and
business statistics. In the case of dynamic design, we present an algorithm for materialised
view selection which improves the existing method in dealing with dynamic design. In
the case of distribution design, we introduce a query cost model and some heuristics on
fragmentation;

Chapter eight contains the conclusion of the work and some indications for future
developments.

10

Chapter 2

Literature Review

This chapter gives a review of the related work in the areas of data warehouse design,
schema integration and formal system development methods.

2.1 Data Warehouse and OLAP Systems Design

A data warehouse is a single data repository where data from multiple data sources is
integrated for online business analytical processing (OLAP) spanning the entire organisa-
tion. This implies a data warehouse needs to meet the requirements from all the business
processes within the entire organisation. Thus, data warehouse design is a highly com-
plex, lengthy and thus error-prone process. Furthermore, business analytical tasks change
over time, which results in changes in the requirements for the systems. Therefore, data
warehouse and OLAP systems are rather dynamic and the design process is continuous.

2.1.1 Design Methods

Since the emergence of data warehousing in the late 1980s, extensive research has been
carried out. However, the majority of these efforts aim for solutions which deal with
isolated issues, such as view selection, view maintenance, data modelling, conceptual
design, schema design, index design, ETL (Extract-Transform-Load) modelling, dynamic
data warehouse design, and so on.

Materialised Views as Data Warehouse

In the view selection approach, the data warehouse is seen as a set of materialised views
defined over multiple data sources for answering a set of user queries. The simplest form
of materialised view approach is to pre-compute and store all the user queries. A more
effective way is to find a set of shared intermediate results of the queries, such that for
a given storage space, it achieves an optimal solution to total query response time and
view maintenance. Many works provide algorithms for view selection problems as shown
in [38, 39, 41, 48].

The subsequent problem after the view selection is view maintenance. As the data
is usually extracted from operational systems, sometimes called transaction systems, the
data in these systems changes constantly. This implies that the selected views become out
of date very quickly. To be useful, the materialised views need to be refreshed regularly.
In particular, the views for OLAP analysis often involve historical data and so they

11

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

are usually huge and the refreshing process takes time. Providing an optimal method for
maintaining the materialised views has received intensive attention, such as [65, 4, 62, 80].

In addition to the changes in the data sources, the user requirements, e.g. the set of
queries, change too. In the case that new queries are added, it is common that the selected
materialised views cannot answer the new queries, so new views need to be materialised.
In the case that existing queries are removed, some selected views are no longer useful,
so they should be removed. [109] presents a method for finding a set of new views to
materialise which with a given extra space, minimises the combined new query evaluation
and new view maintenance cost. [107] presents a method for detecting the redundant
views which can be removed without negative impacts on the existing query evaluation
and view maintenance cost.

As the methods for view selection and maintenance focus on the methods of optimising
query response and maintenance cost, they are never combined as an integrated design
method for data warehouse and OLAP systems. Furthermore, the data warehouse de-
signed as a set of materialised views cannot be used for OLAP analysis such as roll-up,
drill-down, and drill-across. However, view selection and maintenance methods are use-
ful as techniques for improving query performance in data warehouse systems design as
shown in [6, 48, 61].

Design Methods in the Industry

Data warehouse design in the industry takes approaches different from view materialisa-
tion. It sees data warehouses as database systems with special needs, such as answering
management related queries. The focus of the design becomes how the data from multiple
data sources should be extracted, transformed, loaded (ETL in short) to and be organised
in a database as the data warehouse. There are two dominant approaches, the “top-down”
approach by Inmon [53] and the “bottom-up” approach by Kimball [58].

In the “top-down” approach, a data warehouse is defined as a subject-oriented,time-
variant, non-volatile, integrated data repository for the entire enterprise [53]. Data from
multiple sources are validated, reformatted, and stored in a normalized (up to 3NF)
database as the data warehouse. The data warehouse will store “atomic” data, the data
at the lowest level of granularity, from where dimensional data marts can be built by
selecting the data needed for specific business subjects or specific departments. The
“top-down” approach is a data driven approach as the data is gathered and integrated
first and then business requirements by subjects for building data marts are formulated.
The advantage of this approach is that it provides a single integrated data source, thus
data marts built from it will have consistency when they overlap. The disadvantage to
this method is that the initial effort, cost and time for implementing a data warehouse
is significant. The development time from building the data warehouse to having the
first data mart available to the users is substantial, leading to a late ROI (Return On
Investment).

In the “bottom-up” approach, a data warehouse is defined as “a copy of transaction
data specifically structured for query and analysis.” [58], namely the star schema. In this
approach data marts are created first to provide reporting and analytical capabilities for
specific business processes (or subjects). Thus it is considered to be a business driven
approach in contrast to Inmon’s data driven approach. Data marts contain the lowest
grain data and, if needed, aggregated data too. Instead of a normalised database for the
data warehouse, a denormalised dimensional database is adopted to meet the information
delivery requirements of data warehouses. Using this approach, in order to use the set of

12

2.1. DATA WAREHOUSE AND OLAP SYSTEMS DESIGN Jane Qiong Zhao

data marts as the enterprise data warehouse, data marts should be built with conformed
dimensions in mind, meaning that common objects are represented the same in different
data marts. The conformed dimensions link the data marts to form a data warehouse,
which is usually called a virtual data warehouse. The advantage of the “bottom-up” ap-
proach is that it has quick ROI, as creating a data mart, a data warehouse for a single
subject, takes far less time and effort than creating an enterprise-wide data warehouse.
However, the independent development by subjects can result in inconsistencies, if com-
mon objects are not integrated and are updated at different times in the individual data
marts. Although guidelines are provided in the method, such as a planning stage for data
warehouse bus, it does not provide effective techniques, and thus it is not guaranteed that
the method resolves the integrity problem in practice.

The work by Adamson et al [2] presents a collection of case studies, each of which shows
how to build a dimensional model for a specific business process following the “bottom-
up” approach. Their focus is to show, by presenting the case studies for simulating a
common business company processes, such as sales, marketing, inventory, etc., how to
build dimensional data models based on the business needs, and how to answer business
queries using dimensional data models.

The work in [102] provides a comparison of data warehousing methodologies avail-
able in the industry, such as Oracle methodology, SAS methodology, etc., using a set
of attributes they defined. Among these attributes, requirements modelling, data mod-
elling and change management are particularly interesting. The requirements modelling
attribute is used for measuring the techniques of capturing and modelling the business
requirements, data modelling for data modelling techniques in developing logical and phys-
ical models, and change management for techniques in managing the changes in the data
warehouse. According to their review, most data warehouse development methodologies
put sufficient emphasis on modelling user requirements accurately. On the other hand,
change management is an important issue of data warehouse design which is overlooked
by most vendors in their methodologies. The finding in [102] indicate that none of the
methodologies they reviewed has been recognized as a standard as yet.

Data Warehouse Modelling

Most data warehouse design processes consist of a set of common tasks, among which
the question how to accurately and effectively model a data warehouse is considered to
be important. As we take HERM (Higher-order Entity-Relationship Model) [106], an
extended ER model with the convenience of defining relationship type over relationship
types, as our visual conceptual model, and the star schema [58] is in fact of HERM type,
methods for conceptual design is not our focus in this research work. Therefore, our
discussion in this area does not aim to be exhaustive.

A common argument among those researchers who aim at creating new conceptual
models for data warehouse design, is that conceptual design is critical in data warehouse
design, but most design methods do not incorporate a conceptual design phase [111, 91].
Furthermore, they believe that the current conceptual model for database development,
the ER model, does not capture the dimensions and facts explicitly, and thus is not suitable
for data warehouse modelling. Considering a data warehouse as a special database, they
suggest that normal forms for measuring good schema design should be defined and used.

The work in [111] claims that most data warehouse design methods, particulary those
star schema-based, focus more on the logical and physical design of schema which lack
the consideration of users’ needs. Furthermore, they argue that the ER model, though

13

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

widely used for conceptual modelling, is not suited for data warehouse design. Therefore,
a model of higher abstraction, and more understandable to users than star schema, as
the conceptual model, is needed. By identifying a set of concepts needed for modelling
user requirements in data warehouse using an example of mortgage business, the work
presents a model which combines ER model and data warehouse star schema into one
single model, called starER, for incorporating the concepts.

The work in [91] suggests that conceptual modelling helps in achieving the flexibility
and reusability of data warehouse schemata in the data warehouse evolution due to user
requirements changing and getting extended over time. The work introduces a Multidi-
mensional E/R Model (M E/R model) as a conceptual model in data warehouse design.
Based on the fact that the ER modelling technique was created without multidimensional
modelling in mind, and their belief that explicit dimension modelling is necessary, the au-
thors present an extended ER model with constructs which are used to explicitly indicate
if an entity or relationship is a dimension or a fact and the connections between the fact
and dimensions. This work adds a dimensional view over the ER model.

The work in [51] proposes a systematic method for deriving a conceptual schema from
operational databases, relational in particular. The authors consider a data warehouse as a
special database so the design follows the same process for databases, such as requirement
analysis, conceptual design, logical design and physical design. In particular, the con-
ceptual design phase in data warehouse design has to identify dimensions, corresponding
dimension hierarchies, and measures, and has to determine the allocation of the attributes
from the underlying database(s) in the data warehouse schema. The authors assume the
existence of a global ER schema for the data sources and rely on the business users to
identify the measures and dimensions that are required in the data warehouse from the
operational ER schema. They define a 3-phase process model for the conceptual design,
through which the measures and the dimensions identified are gradually transformed into
the graphical multidimensional schema, which consists of facts and a set of dimensions
with hierarchies, in a normal form MNF designed for multidimensional databases in [68].

The work in [34] presents a graphical Dimensional Fact model as the conceptual model
and a method to derive it from a global ER model of the operational database. This
approach is similar to, but earlier than the work in [51]. The later uses normal forms in
the identification of facts for improvements.

The work by Moody in [77] presents a method for developing dimensional models
from ER models of the data sources. The three-steps process of the method involves data
classification and dimension hierarchy identification using the operational ER model. The
method follows the “top-down” approach, with the hope that the derived model is more
resilient to future changes in user requirements.

The work in [112] present a model for OLAP application design which follows the “top-
down” approach by assuming a data warehouse is built from the operational database
first, before building a model for the OLAP analysis process. Therefore, the concepts for
OLAP modelling captured in the MAC (Multidimensional Aggregation Cube), namely
dimensions, dimension hierarchies, analysis paths, and measures, are closely related to
OLAP operations, such as roll-up, drill-down, etc.

The work in [5, 116] defines data models for multidimensional databases using the
concept of cubes, i.e. a multidimensional array. Agrawal et al [5] argue that the relational
database model is for OLTP (On-line Transaction Process) not for OLAP. They define the
cube-based model with a set of basic operations aiming for constructing OLAP function-
alities. One nice thing about this model is that it treats dimensions and measures sym-
metrically. Instead of constructing OLAP functions from a set of basic cube operations,

14

2.1. DATA WAREHOUSE AND OLAP SYSTEMS DESIGN Jane Qiong Zhao

Vassiliadis [116] defines a set of operations which directly map the OLAP functionalities,
such as roll-up, drill-down, etc. Both [5] and [116] present mappings of their models to
relational databases, while [116] also describes mappings to multidimensional arrays.

The work in [82] introduce nine requirements the authors believe important in measur-
ing a good multidimensional model. The authors further present a model which they claim
addresses the nine requirements, among which there are the desired property symmetric
treatment of dimension and measure, and other features such as recording uncertainty
and different level of granularity in the model.

The work in [68] proposes two normal forms for defining “good schema” in the context
of summarisability, a property describing the validity of aggregation on an attribute along
a dimension or multiple dimensions with hierarchies. These normal forms are defined by
restricting the existence of (weak) functional dependencies. The work also provides a more
general normal form by introducing the concept of “context of validity” for attributes.

To summarise, we find most of the work so far merely provides models for combining
ER model and dimensional model into one single model, for they believe both ER con-
cepts and dimensional concepts are necessary in conceptual design for data warehouses.
However, we believe that the purpose of a conceptual design phase is to map the user
requirements to a first model of system design. Seeing how most of the methods try
to derive the conceptual model from the underlying operational database, a data driven
approach, it appears unlikely that these methods will build conceptual models that meet
the user needs. This may be the reason why other data driven methods start from logical
design onwards. Furthermore, a data warehouse derived from the operational database
may not be able to meet the user requirements completely, since some requirements do
have impacts on the underlying databases, e.g. to capture more data needed for user
queries. They also may contain unwanted data, which makes them unnecessarily bulky.

Although the method in [51] does involve the users in the conceptual design, their
approach of depending on the users in identifying the facts (i.e. measures) and dimensions
appears impractical. My recent working experience at Massey University, New Zealand,
in data warehousing has shown that an ER model of a data mart HEMI (Head counts
and EFTS Management Information) attracts more business users attention than the star
schema with dimensions and measures, which typically are not concepts within the grasp
of business users.

Our understanding of the purpose for dimensional models are that they are good for
effective information delivery, which is the centre of Kimball’s argument [59] on why ER
model, to be more specific, the 3NF of ER model, does not suit to data warehouse logical
schema design. It is well known that the normalisation in relational database is meant
for effectively storing information and maintaining its integrity in updates. However, it
does not mean that the ER model in the conceptual level does not serve the purpose of
conceptual modelling for data warehouse, a view also taken by Moody in [77].

Although we consider the ER conceptual model useful in data warehouse design, it
does not suggest that the ER model is the only good model, or data models defined
specifically for data warehouses have no merits. The models introduced in [5, 116] had
little impact on design practice, since current database technology is dominated by the
relational database model, but the symmetrical treatment of dimensions and measures is
a desired property in dimensional modelling which provides the flexibility in OLAP query
formulation. With asymmetrical treatment, a typical situation in relational star schema
design is that new OLAP queries can result in redesign of the schema, e.g. when the new
query groups attributes which were previously considered facts. The authors of [82] also
consider the property of symmetric treatment to be important, and claim that their model

15

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

has the property, but it is not clear in their report how it is achieved. Their discussion of
how the model addresses the nine requirements they defined for good multidimensional
modelling is far too brief.

Finally, the normal forms given in [68] for data warehouse schema design, which are
based on the property of summerisability discussed in [69] provides techniques for solv-
ing the issue of validity of aggregation in dimensional database. They are particularly
useful for complex multidimensional schema design, where normalisation algorithms are
beneficial.

Work towards a Comprehensive and Integrated Design Method

After decades of development and application, data warehousing has become an important
component in the management decision making process. However, as pointed out in [89],
very few works provide designers with a design method for the whole design process within
an integrated framework.

In [76], Mazon et al. present a method using Model Driven Architecture (MDA), an
Object Management Group (OMG) standard framework that addresses the complete life
cycle of software development for the whole data warehouse development process. For
multidimensional modelling of data warehouses, they define a MD2A (MultiDimensional
Model Driven Architecture) approach to incorporate the multidimensional modelling con-
cepts through the multi-tiers in the MDA. The method uses an extended UML as the
formal way for building the models in different tiers, and the Query/View/Transformation
(QVT) approach for the transformation of the models from the top tier, the computation
independent model (CIM), downwards to platform independent model (PID), and to plat-
form specific model (PSM). They adapt the data warehouse framework to the MDA which
gives five layer (originated from the 5-tier architecture of data warehouse) and three view
points (from the MDA). The MDA provides the support for system evolution through
facilitating the changes in both the CIM and PIM, and then automatically realising them
in the PSM.

In [72], Lujan-Mora et al. present a UML-based method to derives the data ware-
house design from the underlying operational data sources. The method follows Inmon’s
“top-down” approach and covers the whole design of a data warehouse, which consists
of four different schemas, the operational data schema, the data warehouse conceptual
schema, the data warehouse storage schema, and the business model. The business model
represents the data marts. To be an integrated approach, the method also includes the
mappings from the operational database to the data warehouse conceptual schema, and
from the data warehouse conceptual schema to the data warehouse physical schema.

An earlier work in [35] aims to provide a general methodological framework for data
warehouse design, more specifically the schema design. The method defines a 6-phased
design process, starting from the analysis of the source data with the output of a partial
or whole schema as the global schema of the source data. It then moves to the require-
ment specification phase where the users will decide what will be the facts based on the
global schema produced in the first phase. Then the conceptual design is to produce a
dimensional model with facts and dimensions based on the global schema and the list of
facts identified. The conceptual model is then refined with more details on workload and
data volume in phase 4. In the logical design phase, the logical schema is produced to
minimise the query response time, which is a combination of materialised views and a
star schema. The final phase concerns the physical design of the schema using database
techniques.

16

2.1. DATA WAREHOUSE AND OLAP SYSTEMS DESIGN Jane Qiong Zhao

The above-mentioned UML-based methods benefit from the UML visual presentation
in modelling and the support to being an integrated method for the whole system devel-
opment, but if the issues of UML (discussed in [98, 17]), such as unclear semantics and
inappropriate abstraction layer of user requirements, are not properly addressed, they can
lead to ambiguities which compromise the correctness of the design. In neither of the
works, these issues are addressed.

The method in [76] is similar to our method in that it models each layer of the five-
layer data warehouse architecture with data and operations separated in different layers,
whereas we model the three-tiers architecture with data and the related operations com-
bined. The method also models three grand views representing a specific stage in the
development life cycle, whereas in our method we have two grand views, the ground
model and the refined models, the latter being a set of models each of which reflects
a design decision and works as a formal documentation. As the paper focuses only on
the multidimensional model design and the corresponding transformations of the models
between the different views, it is unclear how ETL (Extract-Transform-Load) or system
evolution are actually modelled. We consider it important for an integrated design method
to demonstrate how the different parts of the design work as a whole.

We find the four-schema structure defined in [72] is unusual, as it is a mix of func-
tionalities and design levels. The middle two schemas are for the data warehouse, one
at the conceptual level, one at the physical level, while the other two schemas represent
the underlaying operational data sources and the business model without saying which
design level they are at. The authors leave out some important details which we consider
are helpful for readers to understand their method, for example, the modelling of the
mappings between schemas, which the authors also consider important for the method to
be an integrated one.

The work in [35] focuses only on the schema design and it depends on the user in facts
selection, which we find may not be practical.

2.1.2 Data Warehouse Evolution

As business conditions change constantly, the user requirements for a data warehouse never
stay the same. Hence, it is natural that a data warehouse design method should deal with
this dynamic issue. As agreed in [89], incorporating solutions for data warehouse evolution
in the design method becomes an important issue in data warehousing. Unfortunately,
few design methods reported so far include this important area. In the following, we will
give a review on the works specific to data warehouse evolution.

Techniques and methods for data warehouse evolution have been reported in many
works, such as [37, 109, 19, 61, 64], which are useful when data warehouse is implemented
as a set of materialised views, or a set of materialised views is selected for improving the
query performance in a data warehouse.

The work in [37] present a technique for effectively adapting the views when changes
are made in the set of user queries. Instead of recomputing the changed query from the
base data, they make use of the view definition of the current queries and compute the
answer completely if possible, or partially from the result of the current queries locally.
They call this problem of maintaining views by view redefinition the “view adaptation
problem”. This approach is particularly useful when query performance is critical, e.g.
an interactive user query system. The technique is implemented by a set of algorithms to
cater for the types of changes that can be made to a view in the form of an SQL query,

17

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

with a cost-based query optimiser for optimal solutions in query performance.
In [19], a logical model for representing a data warehouse as a hierarchy of views

of relational queries is proposed, namely the base views, the intermediate views, and
the user views. The basic idea is to synthesise the data warehouse schema from a set of
relational queries by first representing the queries using multiple query (evaluation) plans,
and then integrating the set of multiple query plans into a single graph. Finally the single
graph is pruned by removing redundancy. This logical model is used in dealing with the
data warehouse evolution, classified by changes from the users, the data sources, and the
materialised views. The last one is only relevant when views for query performance are
included in the set of queries. This idea is somewhat similar to ours, in that integration
is applied in their second view generation step. However, the paper does not provide
technical details on the complex integration process.

In [109], the data warehouse is implemented as a set of materialised views over the
source databases. The problem of incorporating new requirements is reduced to finding
additional views to materialise for a set of new queries. The authors provide the technical
details on the modelling of the problem and suggest algorithms and heuristics for solving
it. Although the work provides a simpler method for coping with the changes than an
approach which reselects views from scratch, with techniques to select such a set of new
views that it is optimal w.r.t the set of new queries and the extra space given, this approach
will not maintain an optimal design of the data warehouse w.r.t the complete set of the
users queries in a long run, especially when considering this type of changes happens often.

In [64, 61], dynamic view selection is used in improving query performance. A system
for dynamic view management is presented in [61]. By providing a dedicated space,
the basic idea is to cache the aggregated query results during the user query time for
answering subsequent user queries in the future. Discussions and techniques for how
to effectively maintain the set of views are provided. The work in [64] suggests a two-
phase operation for OLAP system, with startup phase for static view selection, and online
phase for continues view selection. Their concern about the dynamics of view selection
focuses on the change in query distribution, similar to the concern of a DBA (Database
Administrator) in database tuning. In their approach, the statically selected materialised
views will evolve from M1 to M2, . . . during the online view selection phase. However,
they provide few details on how the set of new views are actually derived during the online
phase.

Evolution in materialised views as data warehouse has been well studied, and a few
works dealing with schema evolution in dynamic data warehouse design are found in
[58, 9, 79], which are not in the form of an integrated design method.

In Kimball’s method [58], the issue of data warehouse change is focused on one as-
pect only, that is, for keeping the historical data in data warehouse when data from the
source changes. Hence, the issue has only been addressed on dimensions, which he calls
slowly changing dimensions, e.g. to capture a modified product in the product dimension.
Sometimes the changes are so minor that the product will use the same product number.
Kimball proposes three main techniques for handling this slow changing dimensions: over-
writing, creating another dimension record, and creating a current value field. It is clear
the first approach will not keep the historical data. The second approach is to modify the
key with a version number attached to it. The last approach is to create a new field to
capture the changes, but as Kimball suggested this approach should be used with care.
The risk of data explosion may become an issue when such changes are frequent.

In [9], an algebra is defined for describing schema evolution and the effects on the
instances in multidimensional databases. Based on the given model of multidimensional

18

2.2. SCHEMA INTEGRATION Jane Qiong Zhao

database, a set of operations for schema evolution such as inserting/deleting a level in
a dimension, adding/deleting an attribute, making an attribute a dimensional level or
a fact, etc., are defined by describing the effects of the operations on the databases in-
stances. Using the formal framework as the conceptual model, the goal of this approach
is to support the process of automatically propagating the changes from requirements
to implementation automatically by transforming the operations to a sequence of SQL
commands. However, the work is focused on giving the definition of the operations with
no technical details found on the transformation. Furthermore, this approach will not
support history-keeping, a property that is desirable in data warehouse.

In [79], the method of describing data warehouse evolution by schema versioning, an
area closely related to temporal database, is proposed. The main issue in schema version-
ing for data warehouse is to keep the historical data and at the same time to support cross
version enquiry. This work presents a multiversion data warehouse to support alterna-
tive versions of the data warehouse and the data conversions between different versions.
By explicitly modelling the version, it supports the cross version and what-if queries.
This versioning approach is different from Kimball’s as it assigns a version number to a
database instead of a dimension. Hence, guidelines on when a version number should be
used, particularly when version number is explicitly modelled, are expected.

Comparing with the aforementioned methods, our method differs from them by taking
the evolution as one of the design issues. We use schema/view integration based on the
notion of schema dominance, which in particular supports history-keeping. Since our
conceptual model in HERM does not model the dimensions and facts explicitly, we do
not need to define a special set of operations to capture the evolution of our database.
We consider a set of materialised views for query performance, so our data warehouse
evolution is reflected not only in the schema evolution, but also in the set of materialised
views, for which we employ a new view selection algorithm.

2.2 Schema Integration

Database schema integration is an old issue that has attracted a lot of research [57, 60,
63, 67, 106]. The starting point for schema integration is a set of schemata over some
data models. Usually the focus is on two schemata over the same data model. If the
underlying data models differ, then we may assume some preprocessing transforming
both schemata – or one of them, if this is sufficient – into an equivalent schema over a
data model with equal/higher expressiveness. Then schema integration aims at replacing
the given schemata by a single new one in such a way that the new schema dominates or
is equivalent to the old ones.

A view on some database schema consists of another schema called the target schema,
and a defining query, which maps instances of the source schema to instances of the
target schema. If we integrate the target schemata of views we talk of view integration
[8, 104, 106]. In this case we obtain embeddings for each target schema into the new
schema. If these embeddings are coupled with the defining queries for the given views we
obtain a new defining query, i.e. we obtain not only an integrated target schema, but an
integrated view.

The work on view integration in [60, 63, 104] is based on the Entity-Relationship
model. Larson et al. [63] consider containment, equivalence and overlap relations between
attributes and types that are defined by looking at “real world objects”. Equivalence

19

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

between types gives rise to their integration, containment defines a hierarchy with one
supertype and one subtype, and overlapping gives rise to a new common supertype. The
work by Spaccapietra and Parent [104] considers also relationships, paths and disjointness
relations between types. The work by Koh et al. [60] provides additional restructuring
rules for the addition or removal of attributes, generalisation and specialisation, and the
introduction of surrogate attributes for types.

The work by Biskup and Convent in [8] is based on the relational data model with
functional, inclusion and exclusion dependencies. The method is based on the definition
of integration conditions, which can be equality, containment, disjointness or selection
conditions. Transformations are applied aiming at the elimination of disturbing integra-
tion conditions. Just as our work it is based on a solid theory. On the other hand, it has
never been applied to large systems in practice. The approach by Sciore et al. in [101]
investigates conversion functions on the basis of contexts added to values. These contexts
provide properties to enable the semantic comparability of values.

The work by Lehmann and Schewe [66, 67] assumes that the given schemata are defined
on the basis of the Higher-order Entity-Relationship model (HERM) [106] which is known
to provide enough expressiveness such that schemata existing in practice can be easily
represented in HERM. The work relies on the notions of equivalence and dominance as
defined for HERM in [106].

In [66, 67] these notions of equivalence and dominance are also compared with those
defined by Hull [50] and Qian [86]. Basically, the four different notions of schema domi-
nance introduced by Hull differ by the way the transformation functions are defined. In
the simplest case (calculus dominance) they correspond to calculus queries, whereas in
the most general case (absolute dominance) there are no restrictions at all. In fact, tak-
ing computable functions will remove the arbitrariness from absolute dominance that has
been criticised in [86] while taking into account the most general form of queries [24, 113].

In [75], a method for schema (or view) integration following the framework in [67]
is presented, i.e. it first “clean” given schemata by removing name conflicts, synonyms
and homonyms, then adds inter-schema constraints, and applies to this schema formal
equivalence transformation or augmentation rules. The transformation and augmentation
rules are correct in the sense that they will always result in a new schema / view that is
equivalent to the original one or dominates it. For this a new concept of schema equivalence
and dominance based on computable functions is introduced. The work concentrates on
finding a reasonable approach to view integration and cooperation that is theoretically
founded, but pragmatically oriented.

Our method applies the results from [75] with small modifications in the schema trans-
formation rules, which will be discussed later in Chapter 6.

2.3 Software System Development Methods

Software system development is the process of transforming the user requirements into a
computer system. Since the requirements are usually written in a natural language, which
is usually imprecise and and ambiguous, and the system is implemented in a computer
language which is hard for people to read or understand, this transformation process is
rather complex. Therefore, many different methods have been developed. Some are devel-
opment process oriented, such as the structured system development method, also called
waterfall approach, iterative method, and Rational Unified Process (RUP). Others are
technique specific, such as prototyping and formal method. The term “formal method”

20

2.3. SOFTWARE SYSTEM DEVELOPMENT METHODS Jane Qiong Zhao

has also been used with a different meaning, namely a method following established stan-
dards or a method that is mathematically based. We use the term “formal method” with
the latter meaning in this thesis.

2.3.1 Process Oriented Methods - a Brief Introduction

The waterfall approach defines a sequential development process in which development is
seen as flowing steadily downwards (like a waterfall) through the phases of requirements
analysis, design, implementation, testing (validation), integration, and maintenance [120].
Although the rigidness of the development process is criticised as unsuitable for the itera-
tive nature of the system development process [120], the method has been widely applied.
Instead of following the development process strictly as in the waterfall approach, the
iterative approach uses a spiral model which works on a set of prototypes before the ac-
tual system is built [11]. A prototype is similar to the actual system in feeling but much
simpler. It is less costly to construct but can be used for evaluation and further evolu-
tion. A new version is constructed by fixing the problems identified in the evaluation and
incorporating more user requirements. This process will repeat until either a satisfactory
prototype is reached, based on which the final system will be constructed, or a decision is
made to give up the idea of the system. The iterative style is particularly suitable when
users are not sure what they really want from the system at the very beginning. The RUP
method follows an iterative and incremental development process [54]. Each iteration is
a process including requirements, design, implementation, testing and deployment, but
the focus of the project will shift that defines the four project phases: inception, elabo-
ration, construction and transition. Part of the method is the industry-standard Unified
Modelling Language (UML) [120].

2.3.2 Formal Methods

Formal methods are mathematically based techniques and tools for the specification, de-
velopment and verification of software and hardware systems. Specifically, the mathemat-
ical techniques are integrated into the development process through:

• a modelling language with precise syntax and semantics for specification;

• a notion of refinement for stepwise development;

• techniques and tools for verification/validation; and

• a standard methodology for application.

There are many formal methods developed and used, such as the ASM-based method,
the B-method, CSP, CCS, π-calculus, LSF, VDM, and Z [119].

The ASM-based method is developed based on Gurevich’s Abstract State Machines
(ASMs) by E. Börger for high level system design and analysis [13, 17]. The method is
characterized by the imperative style of its modeling language, i.e. the notion of ASMs,
which focuses more on the operational semantics than the syntax. Using this method,
a computer system is modelled by an ASM, which is a machine whose state consists of
functions which can be updated via transition rules. The semantics of the transition rules
is defined by interpreting them (in a particular state) as set of updates on the functions
(by assignment) in the machine. Each execution of an update set (if consistent) will result
in a new state of the machine. A sequence of states related through ASM executions –

21

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

finite, when the state of the machine stays the same from somewhere onwards, or infinite
– defines a run of the machine. Therefore, the ASM model displays the operational view
of a computer system, which makes it easy to understand, but not always easy to verify.
However, being executable, ASM modelling enables testing in early stages of development
for uncovering errors. Furthermore, the notion of ASMs allows a computer system to be
modelled at any given level of abstraction. This forms the foundation of the ASM-based
method, which defines the development process from capturing the user requirements by a
ground model, at the level of abstraction that closely simulates the user requirements, to
further developments by stepwise refinements, reaching a level closer to implementation
on a machine. Each refinement realises a single design decision of the system. There are
supporting tools developed for system verification and validation [49].

The ASM-based method has been successfully applied in many areas [49], such as for-
malising database recovery [45], modelling operational semantics of database transactions
[84], specification of Java and the Java Virtual Machine (JVM) [18], specification of the
MS COM [7], and refinement proving for electronic purse design [95]. Many supporting
tools for executing the ASM specifications have been developed [49].

The B-method is a tool-supported formal method based around AMN (Abstract Ma-
chine Notation), the programming and specification language for specifying abstract ma-
chines in the B-method [1]. It was originally developed by Jean-Raymond Abrial. B is
related to the Z notation (also proposed by Abrial) and supports development of pro-
gramming language code from specifications, rather than just formal specification [118].
The B-method is conceptually close to the ASM method, by using abstract machines, but
differs in the way how the abstract machines are constructed, i.e. by constructing the
proof at the same time with the support from proof tools [13]. The difference in other
areas such as concept, etc. can be found in [13]. The B method has been used in major
safety-critical system applications in Europe (such as the Paris Métro Line 14) and other
projects [21]. Its tool support for specification, design, proof and code generation is robust
and commercially available.

The VDM (Vienna Development Method) method is one of earliest established formal
methods for computer-based system development. It originated at IBM’s Vienna Labora-
tory in the 1970s for denotational description of programming languages, and has evolved
to include a group of techniques, such as the specification language VDM-SL, data refine-
ment techniques, and operation decomposition techniques [56, 27]. A model in VDM-SL
describes a system in terms of the functionality performed on data. It consists of a series
of definitions of data types and functions or operations performed upon them. There are
many successful applications of VDM in the industry and the supporting tools developed
[121].

The Z method focuses on system specification and correctness proof. Its notation,
which has been developed at Oxford University’s Programming Research Group in the
late 1970s and early 1980s [122]. Z notation is based on set theory and mathematical
logic. The specification in Z is of a semi-graphic style. The basic building block is called
scheme, which is used to describe the states of the system and the operations on the
states by modelling the before- and after- states [105, 30]. The Z notation is standardised.
It is fully typed which makes it possible to type-check the specifications for uncovering
errors in the early design stage. The Z method has evolved to include the notion of data
refinement and operation refinement [29]. Successful application and development of Z
has been reported in [20].

Besides VDM, Z, B, ASMs as the major methods with industrial impact, there are
the algebraic specifications with OBJ, Maude, etc., and the process calculi such as CSP,

22

2.4. SUMMARY Jane Qiong Zhao

CCS, π-calculus, LSF, etc.

2.3.3 Application of Formal methods

As pointed out in [47, 23], the major benefit of formal methods is the abstract and precise
system specification, which helps in controlling the system complexity, removing ambigu-
ity and inconsistency in system requirements, and facilitating system correctness proof.
Furthermore, errors uncovered in the early stage of system development reduce the system
cost. Formal methods are useful in any system development, and are particularly desired
in systems being critical in terms of safety, security or information, such as aviation,
networking, and management decision support.

However, formal methods are not accepted as common practice due to the perception of
being hard to understand and apply [47, 23], and due to the extra work required. Much
effort has been made in making the application of formal methods a less difficult and
more beneficial process, e.g. by providing supporting tools for specification generation
(e.g. CASE tools), validation or testing, system aided verification, etc., by tailoring
the method toward the application areas as shown in [97, 100], and by integrating the
techniques of the formal methods with the other software development practice as shown
in [22, 46, 3, 85, 114]).

In [97], a B-like language is used for modelling programs in database systems. It
presents a set of refinement rules for correct program development by construction. The
definition of refinement rules follows the style of weakest precondition.

In [100], we proposed a typed ASM for modelling database schema in HERM (Higher-
order Entity-Relationship Model). By incorporating the types into the ASM, a more
specific notion of refinement, i.e. strong schema refinement, is built for the notion of
schema dominance. The notion of strong schema refinement is used as the base for a set of
refinement rules built for data warehouse schema evolution, which play an important role
for ensuring integrity in the development of data warehouses. There are other approaches
to introducing typed versions of ASMs, e.g. [28] following similar ideas, but with different
focus, which lead to using different type systems. The work in [124] presents a very general
approach to combine ASMs with type theory.

In [22], instead of a using fully formal method or informal method, a method that
integrates the user-centred method for interface design with a formal environment is pre-
sented, aiming to realise the benefits of both methods.

2.4 Summary

The review of literature in this chapter has covered the research areas of design methods
and techniques in data warehousing, integration techniques in database design, and the
formal methods in system development. In the data warehousing area, it has shown that
the work for an integrated design method is still in the preliminary stage, in particular,
the dynamic issue is not well addressed. We consider businesses to be of a dynamic
nature, and consequently management decision support systems are as well. Hence, it is
important to address the dynamic issues in the design method. In schema integration,
matured techniques are available and are applied in data intensive system successfully, but
not yet in data warehousing. As data consistency and integrity is critical for the success of
management support systems, it is a serious concern in data warehouse design. We believe
that consistency and integrity can be improved by incorporating the schema integration
technique in the data warehouse design, especially in the “bottom-up” approach. The

23

Jane Qiong Zhao CHAPTER 2. LITERATURE REVIEW

review in the formal methods area has shown that there are many successful formal
methods.

Our goal is not to compare different formal methods, several of which may be equally
suitable for our task. Instead we focus on the rigidity that a formal methods can offer in
the development process. Specifically, we use it to manage the complexity of the system,
by abstraction, stepwise refinements and precise documentation of design steps for future
changes. Furthermore, the review has also shown that in order to make it easy to integrate
the formal method into the current system development process for a particular domain,
adaptation and specific pragmatics are useful.

24

Chapter 3

Abstract State Machines

Abstract State Machines (ASMs)(formerly known as the Evolving Algebras, [42, 43])
were created by Yuri Gurevich as an attempt to bridge the gap between formal models
of computation and practical specification methods by improving on the Turing’s thesis.
That is, according to Gurevich [43], to seek “more versatile machines which would be
able to simulate arbitrary algorithms in a direct and essentially code-free way. ... The
simulator is not supposed to implement the algorithm on a lower level; the simulator
should be performed on the natural abstract level of the algorithm.”. Here “the natural
level” is used to contrast the level that Turing machines use to simulate algorithms.

The ASM thesis presents a way to model the real world so closely that the correctness
can be established by observation or testing. The model can then be refined or coarsened
for many purposes [43].

Since the establishment, ASMs have been widely used in specifying languages, real and
virtual architectures, in validating language implementations and distributed protocols,
and in proving complexity result, etc. [49]. In particular, Egon Börger has found its
usefulness in system development and developed it into a method for high-level system
design and analysis [17]. The general idea of the ASM approach is to provide a formal
framework for the entire system development process, i.e. starting from the requirements
capturing, through the stepwise refinement, leading to the implementation with a simple
and intuitive mathematical form and without dropping into the pitfall of the “formal
methods straight-jacket”.

The three constituents in the ASM method are: the notion of ASMs for capturing the
fundamental operational concepts of computing; the ground model method for capturing
requirements; and the refinement method for turning the ground model by incremental
steps into implementation.

For the purpose of being consistent, free of confusion and self-contained, a complete set
of definitions for the ASM method are taken from [18, 17, 43] and shown in the following
sections. In addition, this chapter also includes discussions on refinement correctness
proof and a comparison on refinement with other formal methods.

3.1 The Notion of ASMs

Basic ASMs are finite sets of transition rules of the form

if Condition then Updates

which transform abstract states. The Condition (also called guard) is an arbitrary predi-
cate logic formula without free variables. The Updates rule is fired iff its guard evaluates

25

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

to true. Updates is a finite set of assignments of the form

f(a1, . . . , an) := v

whose execution changes (or defines if previously undefined) in parallel the value of the
occurring functions f at the indicated arguments a1, . . . , an to the indicated value v.

The notion of ASM states is the classical notion of mathematical structures where
data comes as abstract objects, i.e., as elements of sets (domains, universes, one for
each category of data) which are equipped with basic operations(partial functions) and
predicates (attributes or relations). By default, it includes equality sign, the nullary
operations true, false, and undef and the boolean operations.

The notion of ASM run is the classical notion of computation of transition systems. An
ASM computation step in a given state consists in executing simultaneously all updates
of all transition rules whose guard is true in the state, if these updates are consistent.
For the evaluation of terms and formulae in an ASM state, the standard interpretation of
function symbols by the corresponding functions in that state is used.

Functions are classified as basic or derived functions. Basic functions are functions
which are part of the state, while derived functions are a kind of auxiliary functions,
which may vary over time but are not updatable directly by neither the ASM nor the
environment. Basic functions are further classified into static or dynamic functions. Static
functions are functions which never change while dynamic functions may change during
the run of the ASM. Dynamic functions can be further divided into four subclasses,
depending on who is allowed to update them:

• either by and only by the ASM, in which case we get controlled functions,

• by the environment, in which case we get monitored functions,

• by both, then we get shared functions,

• updatable but not readable by the ASM and readable only by environment, which
gives us out functions.

In particular, a dynamic function of arity 0 acts as a variable, whereas a static function
of arity 0 acts as a constant.

3.2 Mathematical Definition of ASMs

This section provides a mathematical definition for the syntax and semantics of ASMs.

3.2.1 Abstract States

In an ASM state, data comes as abstract elements of domains (also called universes) which
are equipped with basic operations. The states of ASMs “store” the current value of basic
functions. As they form algebras, as introduced in standard logic or universal algebra
textbooks, and may change over time, ASMs where initially called “evolving algebras”.

Definition 3.1 (Signature). [17, Def 2.4.1] A signature Σ is a finite collection of function
names. Each function name f has an arity, a non-negative integer. The arity of a function
name is the number of arguments the function takes. Function names can be static or
dynamic. Static nullary function names are called constants, dynamic nullary functions
correspond to the variables of programming. Every ASM signature is assumed to contain
constant undef, True, False. Signatures are also called vocabularies.

26

3.2. MATHEMATICAL DEFINITION OF ASMS Jane Qiong Zhao

Definition 3.2 (State). [17, Def 2.4.2] A state A of the signature Σ is a non-empty set
X, the superuniverse of A, together with interpretations of the function names of Σ. If f
is an n-ary function name of Σ, then its interpretation fA is a function from Xn into X;
if c is a constant of Σ, then its interpretation cA is an element of X. The superuniverse
X of the state A is denoted by |A|.

Formally, function names are interpreted in states as total functions. They can however
be viewed as being partial, if we define the domain of an n-ary function name f in A
to be the set of all n-tuples (a1, . . . , an) ∈ |A|n such that fA(a1, . . . , an) 6= undef A. The
constant undef represents an undetermined object, the default value of the superuniverse.
In applications, the superuniverse X of a state A is usually divided into smaller universes,
modelled by their characteristic functions.

Definition 3.3 (Term). [17, Def 2.4.11] The terms of A are syntactic expressions gener-
ated as follows:

• Variable v0, v1, . . . are terms.

• Constants c of A are terms.

• If f is an n-ary function name of Σ and t1, . . . , tn are terms, then f(t1, . . . , tn) is a
term.

A term which does not contain variables is called closed. Note that term variables
are not dynamic functions of arity 0. Terms are purely syntactic objects, but can be
interpreted in a state when given a variable assignment (see below).

Definition 3.4 (Variable assignment). [17, Def 2.4.12] Let A be a state. A variable
assignment for A is a function ζ which assigns to each variable vi an element ζ(vi) ∈ |A|.
ζ a

x
is used for the variable assignment which coincides with ζ except that it assigns the

element a to the variable x. So we have:

ζ
a

x
(vi) =

{
a if vi = x;
ζ(vi) otherwise.

Definition 3.5 (Interpretation of terms). [17, Def 2.4.13] Let A be a state of Σ, ζ be a
variable assignment for A and t be a term of Σ. By induction on the length of t, a value
[[t]]Aζ is defined as follows:

• [[vi]]
A
ζ := ζ(vi),

• [[c]]Aζ := cA,

• [[f(t1, . . . , tn)]]Aζ := fA([[t1]]
A
ζ , . . . , [[t1]]

A
ζ).

The interpretation of t depends on the values of ζ on the variables of t only: if ζ(x) =
ξ(x) for all variables x of t, then [[t]]Aζ = [[t]]Aξ .

Definition 3.6 (Boolean Formula). [17, Def 2.4.14] Let Σ be a signature. The formulas
of Σ are generated as follows:

• If s and t are terms of Σ, then s = t is a formula.

• If ϕ is a formula, then ¬ϕ is a formula.

27

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

• If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ) are formulas.

• If ϕ is a formula and x a variable, then (∀xϕ) and (∃xϕ) are formulas.

The logical connectives and quantifiers have the standard meaning. e.g. → is called
implication, and it has the meaning if-then.

A formula s = t is called an equation. The expression s 6= t is an abbreviation for
the formula ¬(s = t). Parentheses in formulas are often omitted for readability where
it does not create ambiguities. Formulas can be interpreted in a state with respect to a
variable assignment. The classical truth tables for the logical connectives and the classical
interpretation of quantifiers are used. The equality sign is interpreted as identity.

Definition 3.7 (Interpretation of formulas). [17, Def 2.4.15] Let A be a state of Σ, ϕ be
a formula of Σ and ζ be a variable assignment in A. By induction on the length of ϕ, a
truth value [[ϕ]]Aζ ∈ {True,False} is defined as follows:

[[s = t]]Aζ :=

{
True if [[s]]Aζ = [[t]]Aζ ;
False otherwise.

[[¬ϕ]]Aζ :=

{
True if [[ϕ]]Aζ = False;
False otherwise.

[[ϕ ∧ ψ]]Aζ :=

{
True if [[ϕ]]Aζ = True and [[ψ]]Aζ = True;
False otherwise.

[[ϕ ∨ ψ]]Aζ :=

{
True if [[ϕ]]Aζ = True or [[ψ]]Aζ = True;
False otherwise.

[[ϕ → ψ]]Aζ :=

{
True if [[ψ]]Aζ = True or [[ϕ]]Aζ = False;
False otherwise.

[[∀xϕ]]Aζ :=

{
True if [[ϕ]]Aζ a

x
= True for all a ∈ |A| ;

False otherwise.

[[∃xϕ]]Aζ :=

{
True if [[ϕ]]Aζ a

x
= True for some a ∈ |A| ;

False otherwise.

A state A is called a model of ϕ, if [[ϕ]]Aζ = True for all variable assignments ζ.

3.2.2 Transition Rules and Runs

Updating states means to change the interpretation of (some of) the functions in the
underlying signature. The way ASMs update states is described by transition rules of the
following form which define the syntax of ASM programs.

Note that this notion of ASMs is different from basic ASMs: instead of having sets
of updates using terms, we have transition rules, which first need to be interpreted in a
particular state to result in an update set.

Definition 3.8 (Transition rules). [17, p72] Let Σ be a signature. The transition rules
R, S of an ASM are syntactic expressions generated as follows:

1. Skip Rule:

skip

Meaning: do nothing.

28

3.2. MATHEMATICAL DEFINITION OF ASMS Jane Qiong Zhao

2. Update Rule:

f(t1, . . . , tn) := s

Syntactic conditions:

• f is an n-ary, dynamic function name of Σ

• t1, . . . , tn and s are terms of Σ

Meaning: in the next state, the value of the function f at the arguments t1, . . . , tn
is updated to s.

3. Block Rule:

RS

Meaning: R and S are executed in parallel.
Note: We will also write R||S where this is more readable.

4. Sequential Rule

R1; . . . ; Rn

Meaning: the rules R1, . . . , Rn will be executed sequentially.

5. Conditional Rule:

if ϕ then R else S

Meaning: if ϕ is true, then execute R, otherwise execute S.

This rule can be extended to:

if ϕ1 then R1 elsif . . . elsif ϕn then Rn

The meaning is obvious.

For readability, we introduce a short form for the above rule by Case Rule, if ϕi is
the expression v = ci:

case v of c1 : R1, . . . , cn : Rn endcase

6. Let Rule

let x = t in R

Meaning: assign the value of t to x and execute R.

7. Forall Rule:

forall x with ϕ do R

Meaning: execute R in parallel for each x satisfying ϕ.

29

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

8. Choose Rule:

choose x with ϕ do R

Meaning: choose an x satisfying ϕ and then execute R.

9. Call Rule:

r(t1, . . . , tn)

Meaning: call r with parameters t1, . . . , tn.

Definition 3.9 (Rule declaration). [17, Def 2.4.18] A rule declaration for a rule name r
of arity n is an expression of the form

r(x1, . . . , xn) = R

where R is a transition rule and the free variables of R are contained in the list x1, . . . , xn.
In a rule call r(t1, . . . , tn) the variables xi in the body of R of the rule declaration are
replaced by the values of the parameters ti (call by value).

Definition 3.10 (ASM). [17, Def 2.4.19] An abstract state machine M consists of a sig-
nature Σ, an initial state A for Σ, a rule definition for each rule name, and a distinguished
rule name of arity zero called the main rule name of the machine.

Definition 3.11 (Update). [17, Def 2.4.4] An update for A is a triple (f, (a1, . . . , an), b),
where f is an n-ary dynamic function name, and a1, . . . , an and b are elements of |A|.

The meaning of an update (f, (a1, . . . , an), b) is that the interpretation of the function
f in A has to be changed at the arguments a1, . . . , an to the value b. The pair of the first
two components of an update is called a location. An update set is a set of updates.

Definition 3.12 (Consistent update set). [17, Def 2.4.5] An update set U is called con-
sistent, if it satisfies the following property:

if (f, (a1, . . . , an), b) ∈ U and (f, (a1, . . . , an), c) ∈ U, then b = c

Definition 3.13 (Firing of updates). [17, Def 2.4.6] The result of firing a consistent
update set U in a state A is a new state B = A + U with the same superuniverse as A
satisfying the following two conditions for the interpretations of function names f of Σ:

1. If (f, (a1, . . . , an), b) ∈ U , then fB(a1, . . . , an) = b;

2. If there is no b with (f, (a1, . . . , an), b) ∈ U and f is not a monitored function, then
fB(a1, . . . , an) = fA(a1, . . . , an)

Definition 3.14 (Composition of update sets). [17, Def 2.4.10]

U ⊕ V = V ∪ {(l, v) ∈ U | there is no w with (l, w) ∈ V }

Applying the update set U ⊕ V to a state A is the same as first applying U and then
applying V to the resulting state A + U .

30

3.2. MATHEMATICAL DEFINITION OF ASMS Jane Qiong Zhao

Given a state and variable assignment, a transition rule of an ASM produces an update
set. A definition for the semantics of a transition rule via a calculus is given next. Note
that since we allow recursive calls, it is possible that a transition rule does not have valid
semantics. This happens if the recursive call does not terminate.

[[skip]]Aζ B ∅

[[f(t) := s]]Aζ B {(f, a, b)} if a = [[t]]Aζ and b = [[s]]Aζ

[[R]]Aζ B U [[S]]Aζ B V

[[R S]]Aζ B U ∪ V

[[R]]Aζ B U [[S]]A+U
ζ B V

[[R; S]]Aζ B U ⊕ V
if U is consistent.

[[R]]Aζ B U

[[R; S]]Aζ B U
if U is inconsistent.

[[R]]Aζ B U

[[if ϕ then R else S]]Aζ B U
if [[ϕ]]Aζ = True

[[Ri]]
A
ζ B Ui

if ϕ1 then R1

elsif ϕ2 then R2

elsif . . . Rn

A

ζ

B Ui

if [[ϕj]]
A
ζ = False for j < i and [[ϕi]]

A
ζ = True

[[S]]Aζ B U

[[if ϕ then R else S]]Aζ B U
if [[ϕ]]Aζ = False

[[R]]Aζ a
x

B U

[[let x = t in R]]Aζ B U
if a = [[t]]Aζ

[[R]]Aζ a
x

B Ua for each a ∈ I

[[forall x with ϕ do R]]Aζ B
⋃

a∈I Ua

if I = {a ∈ |A| : [[ϕ]]Aζ a
x

= True}

[[R]]Aζ a
x

B Ua for some a ∈ I

[[choose x with ϕ do R]]Aζ B Ua

if I = {a ∈ |A| : [[ϕ]]Aζ a
x

= True}

[[R]]Aζ a
x

B U

[[r(t)]]Aζ B U
if r(x) = R is a rule definition and a = [[t]]Aζ

Definition 3.15 (Semantics of transition rules). [17, Def 2.4.20] The semantics of a

31

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

transition rule R of a given ASM in a state A with respect to a variable assignment ζ is
defined if and only if there exists an update set U such that [[R]]Aζ B U can be derived in
the given calculus.

Definition 3.16 (Move of an ASM). [17, Def 2.4.21] Let ζ be a variable assignment. We
say that a machine M can make a move from state A to B (written A ⇒ B), if the main
rule of r yields a consistent update set U in state A using ζ and B = A + U .

Definition 3.17 (Run of an ASM). [17, Def 2.4.22] Let M be an ASM with signature
Σ. A run of M is a finite or infinite sequence A0,A1, . . . of states for Σ such that A0 is
an initial state of M and for each n, either M can make a move from An into the next
internal state A′

n and the environment produces a consistent set of external or shared
updates U such that An+1 = A′

n + U , or M cannot make a move in state An and An is
the last state in the run.

By allowing the environment to contribute to the update set, we can model commu-
nication with external processes, such as e.g. getting input over time (instead of making
all input part of the initial state).

3.2.3 The Reserve of ASMs

To introduce new, previously unused values, a special universe called reserve is used. The
ASM reserve set is part of the Universe. New elements are allocated using the rule

import x do R

Meaning: choose an element x from the reserve, delete it from the reserve and execute R.
The reserve of a state is special unary, dynamic relation Reserve which can not be

updated directly by an ASM using the update rule, but will be updated automatically
when an import statement is executed.

3.3 ASM Modules

For complex and large ASMs, a standard module concept can be applied. This does not
change the underlying semantics, but allows for better code structuring. We construct a
large ASM by a collection of ASM modules (also called submachine) M1, . . . , Mn. Each
Mi consists of a header and a body. The header of an ASM consists of its name, an import-
and export-interface, and a signature. The body of an ASM module consists of function
declarations and rule definitions. Thus, an ASM module is written in the form

ASM M
IMPORT M1(r11, . . . , r1n1), . . . , Mk(rk1, . . . , rknk

)
EXPORT q1, . . . , q`

SIGNATURE s
BODY decl1 . . . decln

Here rij are the names for functions or rules which are imported from the ASM Mi.
These functions and rules will be declared and defined in the body of Mi — not in the
body of M — and only used in M . This is only possible for those functions and rules that
have explicitly been exported. So only the functions and rules q1, . . . , q` listed after the

32

3.4. DISTRIBUTED ASMS Jane Qiong Zhao

EXPORT can be imported and used by other ASMs. For each ASM module there must
be a main rule defined. As in standard modular programming languages this mechanism
of import- and export-interface permits ASMs to be developed rather independently from
each other, leaving the definition of particular functions and rules to “elsewhere”.

3.4 Distributed ASMs

The notion of ASMs which formalise simultaneous parallel actions of a single agent has
grown into a generalisation where multiple agents act and interact in an asynchronous
manner. The following definitions are taken from [43].

Definition 3.18 (Distributed ASM). A distributed ASM M consists of the following:

1. A finite indexed set of single-agent programs πν , called modules. The module names
ν are static nullary function names.

2. A signature Σ = Fun(M) (Fun(M) denotes the signature of M) which includes
each Fun(πν) − {Self} but does not contain Self. Self is a special unary function
interpreted differently by different agent, e.g., an agent a interprets Self as a. Thus
function Self allows an agent to identify itself among other agents. Self is a logic
name and cannot be the subject of an update instruction.

3. Σ contains a unary function name Mod.

4. A collection of Σ-states, called initial states of M , satisfying the following conditions:

• Different module names are interpreted as different elements (agents).

• There are only finitely many elements a such that, for some module name ν,
Mod(a) = ν.

The requirements for initial states above also apply to non-initial states A of M .
The agents of state A are those elements a for which there exists a module ν such that
A |= Mod(a) = ν. The corresponding πν is the program Prog(a) of a, and Fun(πν) is the
signature Fun(a) of a. Agent a is deterministic if Prog(a) is. The underlying idea is to
code a module once, and then run multiple copies of it if desired.

Viewa(A) is the reduction of A to signature Fun(a)−{Self} expanded with Self, which
is interpreted as a. Viewa(A) can be seen as the local state of agent a corresponding to
the global state A.

An agent can make a move at A by firing Prog(a) at Viewa(A) and changing A ac-
cordingly. To perform a move of an agent a, fire

Updates(a,A) = Updates(Prog(a), Viewa(A)).

Definition 3.19 (Sequential runs). A pure sequential run ρ of an ASM M is a sequence
(Sn : n < k) of states of M , where S0 is an initial state and every Sn+1 is obtained from
Sn by executing a move of an agent.

An initial segment of a poset (partially ordered set) P is a substructure X of P which
is downward closed, i.e., if x ∈ X and y < x in P then y ∈ X. As a substructure, X
inherits the ordering of P . A linearisation of a poset P extends the partial order of P to
a linear order, making every two elements in P comparable.

33

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

Definition 3.20 (Partially ordered runs). For simplicity, attention is restricted to pure
runs and deterministic agents. A run ρ of a distributed ASM M can be defined as a triple
(P, A, σ) satisfying the following conditions:

1. P is a partially ordered set, where all sets {y : y ≤ x} are finite.

Elements of P represent moves made by various agents during the run. If y < x
then x starts when y is already finished, which is why the set {y : y ≤ x} is finite.

2. A is a function on P such that every nonempty set {x : A(x) = a} is linearly ordered.

A(x) is the agent performing move x. The moves of any single agent are supposed
to be linearly ordered.

3. σ assigns a state of M to the empty set and each finite initial segment of P ; σ(∅) is
an initial state.

σ(X) is the result of performing all moves in X.

4. The coherence condition: if x is a maximal element in a finite initial segment X of
P and Y = X − x, then A(x) is an agent in σ(Y) and σ(X) is obtained from σ(Y)
by firing A(x) at σ(Y).

In particular, the conditions above ensures that every linearisation of a finite initial
segment of P leads to the same final state.

Partially ordered runs can be used to restrict the order of moves among ASMs when
there are cooperative actions defined. Consider e.g. a setup where ASM M1 sends a value
to a shared location l, and ASM M2 retrieves the value from l. The moves in the two
ASMs, M1 and M2, which have the sending and retrieving actions, must be ordered, while
the remaining moves need not be restricted.

3.5 The Ground Model Method

The ground model method deals with the issues at the beginning of the development
process, i.e. user requirements capturing. The discussion of the ground model method in
the following is based on [14].

Usually, the first system specification, which is formulated in ASMs straight from the
user requirements in natural language, is called the ground model in the ASM method.
In the case of reverse engineering, the ground model is the concrete one from which more
abstract models are derived by abstraction.

3.5.1 The Properties of the Ground Model

The fundamental problem in building computer systems is deciding precisely what to
build. The user requirements are to describe what to build, but often their formulation is
incomplete or too detailed, ambiguous or inconsistent. Hence, we need a model, namely
a ground model, for capturing the requirements, to be

• precise at the appropriate level of detailing yet flexible, to satisfy the required accu-
racy exactly, without adding unnecessary precision;

• simple and concise to be understandable by both domain experts and system de-
signer, and to be manageable for inspection and analysis - this is achieved by “di-
rectly” reflecting the structure of the real-world problem;

34

3.5. THE GROUND MODEL METHOD Jane Qiong Zhao

• abstract (minimal) yet complete. Completeness means that every semantically rele-
vant features is present with no hidden clauses. The completeness property requires
the designer to include a statement of the assumptions made for them at the ab-
stract level and to be realized through the detailed specification left for the later
refinements.

• validatable and thus in principle falsifiable by experiment.

• equipped with simple yet precise semantical foundation as a prerequisite for rigorous
analysis and as a basis for reliable tool development and prototyping.

3.5.2 Three Problems in Formulation

The difficult and error-prone task in requirements capturing is the formalisation task, that
is, to translate the usually natural-language problem description into a sufficiently pre-
cise, unambiguous, consistent, complete (but different from program code), and minimal
formulation of the“conceptual construct” of a computer system.

There are three essential problems in the requirements formalisation, namely

• the language and communication problem,

• the verification-method problem, and

• the validation problem.

The language and communication problem happens between the domain expert and
the system designer in deciding what to build. As the common understanding of ”what
to build” will be used as a contract to bind the two parties in the rest of the development
process, it is to be documented in such a model that both the domain expert and the
system designer are able to understand. This requires the language to be suitable to
model the problem closely (at the right level of abstraction) focusing on the domain
issues of the given problem.

The verification problem stems from the fact that there are no mathematical means to
prove the correctness of the passage from an informal to a precise description. This can
only be replaced by inspections on some kind of “evidence” of the desired correspondence
between the informal model and the precisely formalised model, namely the ground model.
This requires that the ground model inspection provides the evidence of correctness. To
establish the system completeness and consistency, it requires that the ground model can
be used to describe the original intention of the system, and to express it correctly to the
designer, and it can also be used by the domain expert to inspect its completeness, as well
as the designer to check formally the internal consistency and the consistency of different
system views.

The validation problem is about the possibility of performing experiments with the
ground model, in particular to simulate it for running relevant scenarios (use cases),
providing a framework for systematic attempts to falsify the model against the counter
part in reality.

3.5.3 ASMs for the Formalisation Problems

ASMs solve the language and communication problem due to the notion of ASMs, which
is easy to understand for both system designers, by the imperative style, and domain

35

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

experts, by problem-orientation, and allows one to tailor the ground model to resemble
the structure of the real-world problem.

Using ASMs as ground models eases the verification problem since it allows one to use
both inspection (through easy to understand) and reasoning (mathematical based) with
other means that are appropriate. The notation does not limit the verification space.

The validation problem is solved by the operational semantics of ground model ASMs
(by executable ground model or program walk through), which come with a standard
notion of computation or“run”.

3.5.4 An Example of Ground Model

A small example, simplified from Börger’s work [17, pp. 89-91] is used in the following to
show how an ASM ground model is derived from user requirements.

Example 3.1. The problem description of an order invoicing system:

R0.1 The subject is to invoice orders.

R0.2 To invoice is to change the state of an order, from pending to invoiced.

R0.3 On an order, we have one and only one reference to an ordered product of a
certain quantity. The quantity can be different from other orders.

R0.4 The same reference can be ordered on several different orders.

R0.5 The state of the order will be changed to invoiced if the ordered quantity is
either less than or equal to the quantity which is in stock according to the reference
of the ordered product.

R1.1 All the ordered references are in stock.

R1.2 The stock or the set of the orders may vary due to the entry of new orders or
cancelation of orders, or due to having a new entry of quantities of products in stock
at the warehouse. But we do not have to take these entries into account.

R1.3 This means that you will not receive two entry flows, orders or entries in stock.
The stock and the set of orders are always given to you in an up-to-date state.

From the above requirements, we can derive the state of the system as follows:

• By R0.1 and R1.3, we have a universe ORDER, with neither initialisation nor bound
specified.

• By R0.2 there is a dynamic function state:ORDER → pending,invoiced.

• By R0.1 and R0.2, it implies that initially state(o)=pending for all the orders o.

• By R0.5 and R1.1, we have two universes PRODUCT and QUANTITY.

• By R0.3 and R1.1, we have two dynamic functions, product :ORDER → PRODUCT,
and orderQuantity :ORDER → QUANTITY.

• By R0.5, there is a dynamic function stockQuantity :PRODUCT → QUANTITY,
but it does not say when and by who it should be updated.

36

3.6. THE ASM REFINEMENT METHOD Jane Qiong Zhao

The dynamic part of the system can be derived from R0.1 and R0.2: one transition
updates the state of orders from pending to invoiced. Due to limited stock, it may hap-
pen that only a subset of all orders for the same product can be invoiced. Assuming we
update one order at a time and proceed as long as condition R0.5 is met, the rule can be
formalised as follows:

SingleOrder =
choose Order ∈ ORDER with state(Order) = pending
∧ orderQuantity(Order) ≤ stockQuantity(product(Order))
do state(Order) := invoiced

DeleteStock(orderQuantity(Order), product(Order))

3.6 The ASM Refinement Method

The ASM refinement method is introduced mainly by referring the works in [15, 93, 92].
The refinement correctness proof is discussed in 3.6.3, and a comparison on refinement
notion is given in 3.6.4.

In the ASM method, stepwise refinement is used as a practical method to build a
system from ground models, through well-documented incremental design steps, into ex-
ecutable code (or an abstract model in case of reverse engineering). The ASM method
is problem oriented and geared to support divide-and-conquer techniques for both design
and verification. This is similar to the approach taken in [123, 26] for programming by
abstraction, structuring, decomposition and verification. The ASM method provides the
freedom of abstraction, i.e. to allow arbitrary structures to reflect the underlying notion
of state, and the notion of refinement to map an abstract machine to a more concrete
machine with its observable states and runs in such a way that the desired equivalence
can be established under well defined conditions.

3.6.1 The Notion of Refinement

The general notion of ASM refinement between two ASMs M and M∗ is built up using

• a correspondence between the states s of M and the states s∗ of M∗, and

• a correspondence between the runs of M and M∗ involving states s and s∗, respec-
tively.

Definition 3.21 (Correct Refinement). Fix any notion ≡ of equivalence of states and of
initial and final states. An ASM M∗ is called a correct refinement of an ASM M iff for each
M∗-run S∗0 , S

∗
1 , . . . there is an M -run S0, S1, . . . and sequences i0 < i1 < . . . , j0 < j1 < . . .

such that i0 = j0 = 0, and Sik ≡ S∗jk
for each k and either

• both runs terminate and their final states are the last pair of equivalent states, or

• both runs and both sequences i0 < i1 < . . . , j0 < j1 < . . . are infinite.

We say that the M∗-run S∗0 , S
∗
1 , . . . simulates the M -run S0, S1, The states Sik , Sjk

related by the notion of ≡ are called the corresponding states of interest, which are the
states that are observably equal in the corresponding runs.

37

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

State S S'

State S* S*'

t1 ... tm

u1 ... un

m steps of M

n steps of M*

Figure 3.1: The ASM refinement scheme

According to the general notion of refinement, to relate two ASMs, an ASM M∗ refining
an ASM M , the designer has the freedom to define the following items:

• a notion of states of interest and of correspondence between M -states S and M∗-
states S∗, usually constructed using

– a notion of locations of interest and of corresponding locations, i.e. pairs of
locations to relate in corresponding states, and

– a notion of equivalence ≡ of the data in the locations of interest

• a notion of abstract computation segments which consists of m steps τ1, . . . , τm of
M , and of corresponding refined computation segments, n steps σ1, . . . , σn of M∗.
The corresponding computation segments start from corresponding states of interest
and end in the next corresponding states of interest, as shown in the general ASM
refinement scheme, Figure 3.1. While this is not needed do characterize refinement,
it is often vital for constructing a refinement proof.

The focus of the ASM refinement method, as Börger pointed out in [15], is to sup-
port the usage of refinements to correctly reflect and explicitly document an intended
design decision, adding more details to a more abstract design description, e.g. for mak-
ing an abstract program executable, for improving a program by additional features or
by restricting it through precise boundary conditions which exclude certain undesired
behaviours.

3.6.2 The Refinement Patterns

There are three frequently used types of ASM refinement pattern which include the con-
servative extension, procedural refinement, and data refinement.

Conservative extension is a purely incremental refinement which is used to introduce
new behaviour in an existing machine. This is done by first defining the condition for
the new behaviour such that it is exclusive from the conditions defined in the existing
machine, and then defining the new behaviour, and making sure the existing machine
performs the same as before by restricting it using the negation of the new condition. In
particular, the conservative extension is used when change of user requirements is purely
incremental.

38

3.6. THE ASM REFINEMENT METHOD Jane Qiong Zhao

Procedural refinement, also called submachine refinement, consists of replacing one
submachine by another submachine in an existing machine. This is often used in restruc-
turing the machines for e.g. decomposition. This type of refinement can also add new
features to the machine too.

Data refinements are refinements where abstract states and rules are mapped to con-
crete ones in such a way that the effect of each concrete operation on concrete data types
is the same as the effect of the corresponding abstract operation on abstract data types.
Data refinements [27] are the basic refinements used in many formal methods, such as
VDM, Z, and B. In ASM data refinement, ASM rules remain largely unchanged, except
where they need to be adjusted to deal with the new data format, and only the abstract
functions and predicates in the ASM rules are further specified.

3.6.3 Correctness Proofs

The ASM method is not geared towards a systematic system verification. Based on
the general notion of ASM refinement, correctness verifications are usually carried out
informally using the commuting diagrams [17], see Figure 3.1. More formal ways for
correctness proofs have been well studied in a series of work by Schellhorn in [93, 92, 96].

In [92], a tool-based refinement correctness verification approach is presented. The
general notion of refinement has been modified into two different notions of correct refine-
ment, based on the comparisons of input/output behaviour and traces (runs), which are
suitable for result computing and reactive systems, respectively.

The notion for input/output behaviour comparison focuses on finite runs only, and
requires that, if ASM′ is said to refine ASM, for every finite trace (st′0, . . . , st

′
n) of the

refined machine ASM′, and every related state st0 of ASM with INV (st0, st
′
0), there

exists a finite trace (st0, . . . , stm) in ASM such that the output states st′n, stm are related.
The notion of trace correctness is similar to the general notion of refinement given

in 3.6.1. It concerns both the finite and the infinite runs and the intermediate states
of interest in the runs. It uses a coupling invariant INV (x, x′), representing the notion
of equivalence between states, to relate the states of interest in the corresponding runs.
The difference from the general notion is that it only requires corresponding runs found
when an initial state st0 can be found in ASM being related to the initial state st′0. This
difference (between general ASM refinement on one side, and input/output behaviour
comparison and trace correctness on the other), makes it possible to capture incremental
refinements, which are not ASM refinements in the general sense. Also it is clear that the
trace-correctness refinement is stronger than the input/output correctness refinement.

Based on the two notions of correctness refinements, formulas expressed in DL (Dy-
namic Logic) have been developed for verification using the support tool KIV. A case
study is presented to show how verifications of a Prolog interpreter is done using the
formulas and KIV tool.

In [93], verification using generalised forward simulation is presented. In this work,
four definitions of refinement correctness are given, which further breaks down the def-
initions in [92] into partial and total correctness. The partial and total correctness are
similar to the extended refinement notion in [27], for ruling out implementation of termi-
nating runs by nonterminating runs in the total correctness refinement. The idea of the
verification approach is to allow two corresponding runs to be split into arbitrary com-
muting diagrams, such as (m,n)−, (0, n)−, (m, 0)−refinements using coupling invariants,
then the verification of refinement correctness is reduced to the verification of obligation
for the commutativity of a diagram. As the proof method propagates the invariant for-

39

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

ward through traces, it takes the form of forward simulation. The generalised forward
simulation is proven to be sound in the work.

Later in [96], Schellhorn has shown how a completeness proof for ASM refinement
can be constructed, which is different from the one in data refinement [27] by combining
forward and backward simulation. The later is not working for ASM refinement, since
the notion of correctness refinement in ASM considers that termination of all ASM runs
from a specific initial state should be preserved as an important property.

Using a simple example, we show how refinement correctness in ASM, particularly for
infinite runs, can be established.

Example 3.2. Let us consider the following ASMs which compute the average of a (multi)set
of integers, adopted from [29]:

M = values
external newvalue, average
main : values := values ∪ {newvalue};

average := sum(values) / nr(values)

and the refined ASM

M∗ = sum, nr
external newvalue, average
main : sum := sum + newvalue; nr := nr + 1;

average := sum / nr

The sets of initial states for M and M∗ are the singletons

IS = {s0 := {values 7→ ∅}}
IS∗ = {s∗0 := {sum 7→ 0, nr 7→ 0}}

We now want to show that M∗ refines M w.r.t. the abstraction predicate

A(s, s∗) :⇔ sum([values]s) = [sum]s
∗ ∧ nr([values]s) = [nr]s

∗

which guarantees that the same averages are returned.
For this we can use forward simulation: the initial states s0, s

∗
0 are corresponding,

i.e., A(s0, s
∗
0) holds. For every corresponding pair of states si, s

∗
i with A(si, s

∗
i) and every

successor state s∗i+1 of s∗i , we can find a successor state si+1 of si such that A(si+1, s
∗
i+1)

holds:
si+1 := {values 7→ [values]si ∪ {[sum]s

∗
i+1 − [sum]s

∗
i }}

Thus, given any (finite or infinite) run of M∗, we can construct a corresponding run for
M: let s∗i denote the states in the run of ASM∗. Since for every “matching” triple of states
si, s

∗
i , s

∗
i+1 there exists at least one state si+1 which completes the commutation diagram,

there exists a function f : Σ × Σ∗ × Σ∗ → Σ which selects such a state si+1 for every
matching triple (in general this requires the axiom of choice (suggested by G. Schellhorn),
but here we don’t need it since si+1 can be defined explicitly). This allows us to define
a corresponding run of M by induction: si+1 := f(si, s

∗
i , s

∗
i+1). By construction we have

that A(si, s
∗
i) and si

M−→ si+1, which shows that we have indeed found a corresponding
run.

40

3.6. THE ASM REFINEMENT METHOD Jane Qiong Zhao

3.6.4 Notions of Refinement: A Comparison with ASM refinement

For different reasons, general or specific, many notions of refinement have been defined in
the literature - we shall mention just a few of them. In [123], a method using refinement
for stepwise program development is presented. A definition of data refinement is given
in [27], and then redefined using Z notation in [29]. A refinement notion for programs
in pre-/post-condition style is given in [78]. ASM refinement notions are described in
[17, 93], and the work in [88] addresses some limitations in the existing formalisms for
process refinement.

For general reasons, we have the principle of substitutivity and the principle of im-
provement. The notion of refinement defined in [29] describes the ones using the principle
of substitutivity as follows:

“it is acceptable to replace one program by another, provided it is impossible for a
user of the programs to observe that the substitution has taken place. If a program can
be acceptably substituted by another, then the second program is said to be a refinement
of the first.”

The definition of refinement in [78] represents the ones based on improvement. The
view here is that a program works as a contract between client and programmer:

“We take the client’s point of view in describing the negotiation: if program prog2
is better than program prog2 for the client, we write prog1 v prog2. That relation v
between programs is called refinement : we say that prog2 refines prog1.”

The improvements appear in the form of removing uncertainty and non-determinism
which is clearly shown in [78], by weakening the precondition and strengthening the post-
condition of the program. Here the program, as the contract, has a wider meaning which
includes not just the final program code but the specifications too, so the difference can
be seen by the users. Otherwise, if the improvements will not be seen by the user of the
program, then the above two notions are the same.

The notion of data refinement in [27] defines the refinement relation by inclusion of the
input/output mapping sets where the refined one is included in the original one, using a
weakly commuting diagram. However, a side effect of this notion is that a program with
empty input/output mapping is a refined program of any original program. This is caused
by neglecting the nonterminating runs in the notion of refinement, a common concern in
most of the notions of refinement, which is addressed in [27] by an extension called total
correctness refinement.

The notion of ASM refinement is based on the operational semantics, i.e. runs, of the
ASM rules, instead of the concrete syntax of the rules. It considers both finite and infi-
nite runs and relates the corresponding runs by the intended equivalence notion between
states of interest. It diverts from the principle of substitutivity, and particularly allows
new features to be observable in the refined machines. This is because it uses the refine-
ment, not just for facilitating replacement in the development, but as a way to document
every intended design decisions and to prepare for future changes. To compare with data
refinement in [27], the similarity is that their notions of refinement are both defined using
the weakly commuting diagram, see Figure 3.2.

However, for data refinement, corresponding runs in the original and refined pro-

41

Jane Qiong Zhao CHAPTER 3. ABSTRACT STATE MACHINES

• AI //

CI ÂÂ@
@@

@@
@@

• Ak // • // • Al // • AF // •

•
α

OO

Ck

// •
α

OO

// •
α

OO

Cl

// •
α

OO

CF

??~~~~~~~

data refinement

• //

IR

• //

@@
@@

@@
@

@@
@@

@@
@ • // • //

~~
~~

~~
~

~~
~~

~~
~

• //

@@
@@

@@
@

@@
@@

@@
@ • // • // •

~~
~~

~~
~

~~
~~

~~
~

OR

@@
@@

@@
@

• //

©

• // • //

©

• //

©

• // • //

©

• // • //

©

•
ASM refinement

Figure 3.2: data refinement vs. ASM refinement

gram/machine are always the same length, but of possibly different length in ASM refine-
ment. Apart from this, the weakened refinement notion in ASM for result computation
system, namely the partial input/output correctness refinement notion [93], and the notion
of the data refinement in [27] essentially coincide. More detailed and complete comparison
with data refinement is presented in [94].

42

Chapter 4

Typed Abstract State Machines

The ASM method provides an open conceptual framework which allows standard notions,
techniques and notations for specific application systems to be integrated easily. In this
thesis, the ASM method is applied in the design of data intensive systems, in particular,
data warehouses and OLAP systems. In order to make the well-developed terminology in
the database application area available to the designers, the notion of ASMs is extended
with types, called Typed ASMs, TASM in short. With TASMs, the notion of schema
refinement and the notion of strong schema refinement are introduced. This is used
for capturing the notion of schema dominance, which is the base for a set of provably
correctness rules in schema integration introduced in Chapter 6. As we have indicated in
Chapter 2, our intention of typed ASM is quite modest compared to other typed ASMs
introduced in the literature [28, 124]. We do not aim for a general purpose type system,
but to provide the convenience of a specialized type system to the designers of data
warehouses.

In the remainder of the chapter, first a type system is introduced, followed by the notion
of states, transition rule and terms in TASM. Other features specific to databases, such
as bulk update commands as special rules for efficiency reasons, and structural recursion
constructs as special terms particularly for data aggregation are also proposed. We then
introduce the notions of schema refinement and strong schema refinement. In the last
part of the chapter, a constructive proof that TASMs are captured by ASMs is presented.

4.1 A Type System

A type system can be viewed as a collection of types, each of which represents a fixed set
of values. Such type systems can be defined by base types with some constructors. The
following is used as a type system to extend ASMs with types:

t = b | {t} | a : t | t1 × · · · × tn | t1 ⊕ · · · ⊕ tn | 1l
Here b represents a not further specified collection of base types such as label, id, ref,

int, date, etc. {·} is a set-type constructor, a : t is a type constructor with a of type label,
which is introduced as attributes used in join operations. The base type id is used for
uniquely identifying tuples in a relation, ref is an alias for id, but is used for referencing
tuples. Attribute names (i.e. the a in “a : t”) are modelled explicitly as type label so
we can easily refer to them (e.g. for storing FDs function dependencies). × and ⊕ are
constructors for tuple and union types. 1l is a trivial type. With each type t we associate
a domain dom(t) in the usual way, i.e. we have

43

Jane Qiong Zhao CHAPTER 4. TYPED ABSTRACT STATE MACHINES

• dom({t}) = {x ⊆ dom(t) | |x| < ∞},
• dom(a : t) = dom(t),

• dom(t1 × · · · × tn) = dom(t1)× · · · × dom(tn),

• dom(t1 ⊕ · · · ⊕ tn) =
∐n

i=1 dom(ti) =
⋃n

i=1{i} × dom(ti),

• dom(1l) = {1}
In addition, we assume an auxiliary base type U , whose domain includes all domains of

types constructible without U . We will use this where it is more convenient not to specify
the exact type yet (this can be done via later refinements). For further convenience, we
will omit specifying U explicitly as type in declarations, and write just “a” instead of
“a : U” for some label a, where this does not cause ambiguities.

For this type system we obtain the usual notion of subtyping, which is aligned with the
subtyping notion in Object Orientation, that is, a super type has less information than
its subtypes. Our subtype system is defined as the smallest partial order ≤ satisfying

• t ≤ 1l for all types t;

• if t ≤ t′ holds, then also {t} ≤ {t′};
• if t ≤ t′ holds, then also a : t ≤ a : t′;

• if tij ≤ t′ij hold for j = 1, . . . , k, then t1 × · · · × tn ≤ t′i1 × · · · × t′ik for 1 ≤ i1 < · · · <
ik ≤ n;

• if ti ≤ t′i hold for i = 1, . . . , n, then t1 ⊕ · · · ⊕ tn ≤ t′1 ⊕ · · · ⊕ t′n.

We say that t is a subtype of t′ iff t ≤ t′ holds. Obviously, subtyping t ≤ t′ induces a
canonical projection mapping πt

t′ : dom(t) → dom(t′) when t′ can be uniquely identified in
t. This excludes ambiguous cases such as t = int× int and t′ = int, where we do not know
which int we should project onto. In such cases, we use labels (e.g. t = a : int × b : int
and t′ = a : int) to resolve this ambiguity.

Definition 4.1 (Minimal Common Supertype). For two or more types t1, . . . , tn we call
t a minimal common supertype of t1, . . . , tn if t is a common supertype of t1, . . . , tn and
minimal w.r.t. the subtype ordering among all common supertypes.

While two (or more) types do not need to have a unique minimal common super-
type, we can guarantee uniqueness by imposing a simple restriction on the way types are
constructed.

Definition 4.2 (Labeled Component Property). We say that a type t has the labeled
component property, if all tuple or union constructs appearing in t are of the form a1 :
s1 × . . .× an : sn or a1 : s1 ⊕ . . .⊕ an : sn, respectively, where the ai : si are labeled types
with pairwise distinct labels ai.

We will use tuple types to model relations, and label types to attach attribute names
to the columns. Union types will be used to model clusters, so the types we use will
always have the labeled component property.

Lemma 4.3. Every pair of types t1, t2 has a minimal common supertype. If t1, t2 have
the labeled component property, then this minimal common supertype is unique except for
tuple orderings.

44

4.2. SIGNATURES AND STATES Jane Qiong Zhao

Proof. The trivial type 1l is a common supertype of t1, t2, and it is easy to show that
there can only exist a finite number of common supertypes. Thus there exists at least one
minimal common supertype.

We proceed by induction on the number of type constructors used to construct t1. The
lemma is trivial for t1 = 1l or base types t1. We distinguish all other cases based on the
outer type constructor used.

(1) Let t1 = {t′1} for some type t′1. If t2 is not a set type, then the only common
supertype of t1, t2 is 1l. Otherwise t2 = {t′2} for some type t′2, and every common
supertype tS (other than 1l) of t1, t2 is of the form tS = {t′S}, where t′S is a common
supertype of t′1, t

′
2. By our induction hypothesis there exists a unique (up to tuple

orderings) minimal common supertype t′MS of t′1, t
′
2, so tMS = {t′MS} is the unique

minimal common supertype of t1, t2.

(2) For t1 = a : t′1 argue analogous to (1).

(3) Let t1 = a1 : s1 × . . . × an : sn be a tuple type with pairwise different labels ai. If
t2 is not a tuple type or labeled type, then the only common supertype is again 1l.
Otherwise we have

t2 = a′1 : s′1 × . . .× a′m : s′m

(m = 1 if t2 is a labeled type), and the a′i are pairwise different. Thus we can re-index
the tuple components of t1, t2 such that ai = a′i for i = 1 . . . k, and the remaining la-
bels ak+1, . . . , an, a

′
k+1, . . . , a

′
m are pairwise different. Then every common supertype

of t1, t2 is a supertype of

tMS = a1 : r1 × . . .× ak : rk

where ri is the unique minimal common supertype of si, s
′
i. Thus tMS is the unique

(up to tuple ordering) minimal common supertype of t1, t2.

(4) For t1 = a1 : s1 ⊕ . . .⊕ an : sn argue analogous to (3).

Note that this result trivially extends to more than two types.

4.2 Signatures and States

The signature of a TASM is defined analogously to the signature of an “ordinary” ASM,
i.e. by a finite list of function names f1, . . . , fm. However, in a TASM each function fi

instead of an arity now has a kind ti → t′i involving two types ti and t′i. We interpret each
such function by a total function fi : dom(ti) → dom(t′i). Note that using t′i = t′′i ⊕ 1l we
can cover also partial functions. Similar to ASMs, functions can be dynamic or static,
and dynamic function can be controlled function or derived function.

The functions of a TASM including the dynamic and static functions, define the set
of states of the TASM. More precisely, each pair ` = (fi, x) with x ∈ dom(ti) defines a
location with v = fi(x) as its value. Thus, each state of a TASM may be considered as a
set of location/value pairs.

We call a function R of kind t → {1l} a relation. This generalises the standard notion of
relation, in which case we would further require that t is a tuple type a1 : t1×· · ·×an : tn.
In particular, as {1l} can be considered as a truth value type, we may identify R with a

45

Jane Qiong Zhao CHAPTER 4. TYPED ABSTRACT STATE MACHINES

subset of dom(t), i.e. R ' {x ∈ dom(t) | R(x) 6= ∅}. In this spirit we also write x ∈ R
instead of R(x) 6= ∅, and x /∈ R instead of R(x) = ∅.

In addition to function declarations and rule definitions, a TASM also may contain
type definitions. They take the form

name =t type

where name is a type name (we assume a separate universe for type names, similar to
function and rule names), and type a type expression. Type expressions are constructed
from base types and already defined type names using the defined type constructors.
Cyclic definitions are prohibited. Thus e.g. the definitions

date =t day : int×month : int× year : int
period =t start : date× end : date

would be valid, but

book =t title : string × authors : {string} × references : {book}
would not be, since book occurs in the type expression, creating a cycle. While it would
certainly be possible to allow cyclic definitions, we chose to avoid them to keep our type
system simple. This way, every legal type expression has an equivalent type expression
containing only base types (i.e. no type names).

4.3 Transition Rules

As with ASMs we define state transitions via update rules. Most of these rules are defined
the same as in ASMs, with the following exception - in the Update, Let, Forall, Choose
and Call rules, we must have matching types:

• Update Rule:

f(τ) := τ ′

Syntactic conditions:

– f is a function of type t → t′

– τ is a term of type t

– τ ′ is a term of type t′

• Let Rule

let x = t in R

Syntactic conditions:

– the type of x in R is the type of t

• Forall Rule:

forall x : type with ϕ do R

Syntactic conditions:

– the type of x in ϕ and R is type

46

4.4. TERMS Jane Qiong Zhao

• Choose Rule:

choose x : type with ϕ do R

Syntactic conditions:

– the type of x in ϕ and R is type

• Call Rule:

r(τ)

Syntactic conditions:

– the type of τ matches the type in the declaration of r

Each update rule r defines an update set ∆(r) in the same way as for “ordinary” ASMs
[17, p.74]. The notions of consistent update set, run, etc. are also exactly the same as for
untyped ASMs.

Note that we may also omit the type declaration in the Forall and Choose rules. In
this case, the type of x is understood to be U .

4.4 Terms

What is different in TASMs is that the terms used in the rules are typed, i.e. for each
type t we obtain a set Tt of terms of type t. Then also the formulae ϕ used in the rules
change in that equational atoms τ1 = τ2 can only be built from terms τ1, τ2 that have the
same type. All the rest remains unchanged.

So let us assume that for each type t we are given a set Vt of variables of type t. Then
we should have Vt ⊆ Tt and dom(t) ⊆ Tt (treating values as constant symbols which are
interpreted as themselves), and further terms can be build as follows:

• For τ ∈ Tt and t ≤ t′ we get πt
t′(τ) ∈ Tt′ .

• For τ ∈ Tt1×···×tn we get πi(τ) ∈ Tti .

• For τi ∈ Tti for i = 1, . . . , n we get (τ1, . . . , τn) ∈ Tt1×···×tn , ιi(τi) = (i, τi) ∈ Tt1⊕···⊕tn ,
and {τi} ∈ T{ti}.

• For τ1, τ2 ∈ T{t} we get τ1 ∪ τ2 ∈ T{t}, τ1 ∩ τ2 ∈ T{t}, and τ1 − τ2 ∈ T{t}.
• For τ ∈ T{t}, a constant e ∈ dom(t′) and static functions f : t → t′ and g : t′×t′ → t′

we get src[e, f, g](τ) ∈ Tt′ , where src[e, f, g] is a structured recursion, which is
defined straight after the introduction of the terms.

• For τi ∈ T{ti} for i = 1, 2 we get τ1 ./ τ2 ∈ T{t1./t2} using the maximal common
subtype t1 ./ t2 of t1 and t2.

• For x ∈ Vt and a formula ϕ we get Ix.ϕ ∈ Tt.

The last three constructions for terms need some more explanation. Structural recur-
sion src[e, f, g](τ) is a powerful construct, useful in particular for database queries, which
is defined as follows:

• src[e, f, g](τ) = e, if τ = ∅;

47

Jane Qiong Zhao CHAPTER 4. TYPED ABSTRACT STATE MACHINES

• src[e, f, g](τ) = f(v), if τ = {v};
• src[e, f, g](τ) = g(src[e, f, g](v1), src[e, f, g](v2)), if τ = v1 ∪ v2 and v1 ∩ v2 = ∅.

In order to be uniquely defined, the function g must be associative and commutative with
e as a neutral element.

We can use structural recursion to specify set comprehension, which is extremely
important for views. We get {x ∈ τ | ϕ} = src[∅, fτ ,∪](τ) using the static function fτ

with fτ (x) = {x}, if ϕ(x) holds, else fτ (x) = ∅, which can be composed out of very simple
functions.

A simple example for structural recursion, other than set comprehension, would be
summing up all numbers in a set. For any finite set X of numbers (e.g. integers), we have

∑
x∈X

x = src[0, id, +](X)

where id is the identity function.
For the join τ1 ./ τ2, using [[·]]s to denote the interpretation in a state s, we get

[[τ1 ./ τ2]]s = {v ∈ dom(t1 ./ t2) | ∃v1 ∈ [[τ1]]s, v2 ∈ [[τ2]]s.

(πt1./t2
t1 (v) = v1 ∧ πt1./t2

t2 (v) = v2)},
which generalises the natural join from relational algebra.

Ix.ϕ stands for “the unique x satisfying ϕ”. If such an x does not exist, the term will
be undefined, i.e. we have [[Ix.ϕ]]s = v, if [[{x | ϕ}]]s = {v}, otherwise it is undefined.

Note: the Hilbert-generator I would be sufficient to cover all the other cases. Nev-
ertheless, we keep the other constructs for ease of formulation, so our language is not
minimised.

4.5 Bulk Updates

For relations R of kind t → {1l} we further permit bulk assignments, which take one of the
following forms R := τ (for replacing), R :+k τ (for inserting), R :−k τ (for deleting), and
R :&k τ (for updating), using each time a term τ of type {t}, and a supertype k of t (key
of a relation). For deleting operation it suffices that τ is of type {t′} for some “superkey”
type t′ with k ≤ t′ ≤ t. These constructs are shortcuts for the following TASM rules:

• R := τ represents

forall x : t with x ∈ τ do R(x) := {1}
‖ forall x : t with x ∈ R ∧ x /∈ τ do R(x) := ∅

• R :+k τ represents

forall x : t with x ∈ τ ∧ ∀y(y ∈ R ⇒ πt
k(x) 6= πt

k(y)) do R(x) := {1}

• R :−k τ represents

forall x : t with x ∈ R ∧ ∃y(y ∈ τ ∧ πt
k(x) = πt′

k (y)) do R(x) := ∅

• R :&k τ represents R :−k τ ; R :+k τ

48

4.6. SCHEMA REFINEMENT IN TASM Jane Qiong Zhao

4.6 Schema Refinement in TASM

The intuition behind our notion of schema refinement is the following: our TASM consists
of data and rules which operate on the data. Our refinements correspond to schema
transformations, and therefore modify the way the data is represented, while rules stay
essentially the same (although they need to be adapted where they access the data). Thus,
instead of comparing runs in different TASMs directly, we restrict our attention to the
way the schema is changed. We will show that if we have a schema refinement, then rules
can be adapted in a straight-forward manner to obtain a refinement in the classical sense.

Recall that with each TASM M we associate a schema S, and denote the restriction
of a state s ∈ Σ onto S by s[S].

Definition 4.4. Let M, M∗ be two TASMs with schemas S,S∗. We say that M∗ is a
schema refinement of M w.r.t. an abstraction predicate AS ⊆ Σ[S]×Σ∗[S∗], if there exist
computable functions f : Σ[S] → Σ∗[S∗] and g : Σ∗[S∗] → Σ[S] such that

f ⊆ AS ⊆ g−1 (4.1)

Note that (4.1) implies that g◦f is the identity on Σ[S]. Also, the abstraction predicate
AS relates Σ[S] and Σ∗[S∗] rather than Σ and Σ∗. We say that two states s ∈ Σ, s∗ ∈ Σ∗

are corresponding, iff s[S], s[S∗] are related via AS. This convention allows us to also
talk about refinements (rather than schema refinements) w.r.t. the induced abstraction
predicate A on Σ× Σ∗:

A := {(s, s∗) ∈ Σ× Σ∗ | (s[S], s∗[S∗]) ∈ AS}
We will show next how any schema refinement can be extended to a total refinement,

by adapting the rules to work with the new schema instead. Recall that M∗
S is a total

refinement of M if M∗
S and M refine each other.

Theorem 4.5. Let M∗
S be a schema refinement of M w.r.t. AS. Then M∗

S can be modified
in a manner which leaves S∗ unchanged, to obtain a total refinement M∗ of M w.r.t. A.

Proof. Let f, g be as in Definition 4.4. The new TASM M∗ is constructed as follows. We
start with a copy of M, add the relations in S∗ \ S (if M already contains such relations,
rename them), and define the schema of M∗ as S∗. We keep the relations in S \ S∗, but
do not make them part of our schema. They are preserved to temporarily store the data
in its original form.

Now let f̂ , ĝ be the functions obtained when “extending” f, g to functions on Σ, Σ∗ by
leaving all TASM functions not in S ∪ S∗ unchanged.

We then add two new rules revert and convert, which implement the functions ĝ
and f̂ , respectively. Since both functions are computable (since f, g are), this is always
possible. The main rule is then adapted to

mainnew := revert; mainold; convert

i.e. we first revert the data back to its original format, then run the old main rule in its
original form, and convert the data back to its new format afterwards.

Finally, we define the set of initial states of M∗ as IS∗ := f̂(IS), where IS denotes the
initial states of M. It is now easy to show that M∗ refines M, with abstraction predicate
A, using forward simulation. For this we strengthen our abstraction predicate to Â as
follows:

Â := {(s, s∗) ∈ A | s[S ∪ S∗] = s∗[S ∪ S∗]}

49

Jane Qiong Zhao CHAPTER 4. TYPED ABSTRACT STATE MACHINES

where S denotes the complement of S. Note that from (4.1) it follows that

f̂ ⊆ Â ⊆ ĝ−1

This allows us to show the stronger statement that M∗ refines M w.r.t. Â instead.
Now let i, i∗ be two corresponding states of M, M∗, i.e., we have (i, i∗) ∈ Â, and let o∗

be obtained by running M∗ in state i∗. By definition of composition, we can “split” the
application of M∗ into 3 steps with intermediate states i′, o′:

i∗ revert−−−−→ i′
mainold−−−−→ o′ convert−−−−→ o∗

Since (i, i∗) ∈ Â ⊆ ĝ−1, and by construction revert implements ĝ, the states i, i′ are
identical on all TASM functions in M. We therefore can find a state o ∈ Σ which is
identical to o′ on all functions in M, and obtained from i by executing M. Since convert
implements f̂ we have (o, o∗) ∈ f̂ ⊆ Â, which shows that forward-simulation w.r.t. Â is
possible.

The proof that M refines M∗ is done in similar manner.

While the refinement described in the proof above is not the most efficient one, opti-
mizations which modify the TASM rules to operate on the data in its new form directly
can be introduced in further refinement steps. Note that these further refinements are not
covered by our rules. Doing so is not feasible, since access to our data cannot easily be
restricted to a finite set of operations, as is often done for simpler data structures such
as e.g. stacks or lists [..]. It might be possible to do so for a single relation which is de-
composed into multiple “subrelations” (e.g. allowing operations add tuple, remove tuple,
check contains tuple), but in general our schema contains many relations, and compu-
tations performed on the schema are too complex to capture with a pre-defined set of
operations.

We note further that, while the functions f, g in Definition 4.4 have to be computable,
they and the abstraction predicate AS can still be quite arbitrary. In principal it is
possible to refine an entire schema into a single integer variable via “clever” computable
transformations, although this is hardly the type of refinement we have in mind. We
therefore wish to restrict AS further to the type of predicates which occur typically in
schema transformations.

We first define isomorphisms starting from bijections αb : dom(b) → dom(b) for all
base types b. This can be extended to bijections αt for any type t as follows:

αt1×···×tn(x1, . . . , xn) = (αt1(x1), . . . , αtn(xn))

αt1⊕···⊕tn(i, xi) = (i, αti(xi))

α{t}({x1, . . . , xk}) = {αt(x1), . . . , αt(xk)}
Then α is an isomorphism of S iff for all states s, the permuted state α(s), and all

R : t → {1l} in S we have R(x) 6= ∅ in s iff R(αt(x)) 6= ∅ in α(s).
We can now strengthen our notion of schema refinement as follows.

Definition 4.6. A schema refinement with abstraction predicate AS is a strong schema
refinement if AS is invariant under isomorphisms, that is

(s, s∗) ∈ AS ⇐⇒ (αS(s), αS∗(s
∗)) ∈ AS

for all isomorphisms αS, αS∗ induced by the same bijections on base types.

50

4.7. AN EQUIVALENCE RESULT Jane Qiong Zhao

The intuition behind this definition is the following: functions invariant under iso-
morphisms can only compare and copy basic attribute values, and thus only perform
operations which could be considered “reasonable” database transformations. On the
other hand, most database transformation functions (e.g. all relational algebra operators
except constant selection) are invariant under isomorphisms. Correspondingly, almost all
of our refinement rules produce a strong schema refinement.

For all of our refinement rules, we will provide the abstraction predicate AS (usually
just denoted as A, as this won’t cause any ambiguities), as well as the functions f and
g. In principal, to show that the transformations are indeed (strong) schema refinements,
we would have to prove that f, g are computable (and possibly that AS is invariant under
isomorphisms), and that f ⊆ AS ⊆ g−1 holds. However, all these conditions will be
obvious for the refinement rules we introduce, so that providing AS, f, g is sufficient.

Most of of our rules always create strong schema refinements. The only possible
exceptions are Rules 15 and 21, which provide strong schema refinements iff the predicate
ϕ is invariant under isomorphisms, as well as Rules 18-20, which produce strong schema
refinements iff the function h is invariant under isomorphisms.

4.7 An Equivalence Result

Let us now look at the relationship between TASMs and ASMs. We will show how to
translate a TASM M into an ASM Φ(M).

Functions are simply translated by removing their type, and type definitions are re-
moved altogether. If desired, a function f : t → t′ in M with tuple type t = t1 × · · · × tn
as parameter can be translated into a function f̂ in Φ(M) with n separate parameters,
but this is optional.

We then have to translate the rules in M. Here we get a one-one correspondence
between rule constructs in ASM and TASM, except for bulk update operators, which
however are just shortcuts and can be replaced using their definition. Thus we only need
to worry about two things: type checking and translation of terms.

Type checking is only necessary for the forall and choose rules, since all other
type restrictions are static. For dynamic type checking we define some auxiliary unitary
functions tct which return true iff their argument is of type t. Here we must assume that
tcb(x) can be checked for all base types b. Based on this, it is straight forward to construct
tct(x) for complex types:

tc{t}(x) := ∃k.x = {x1, . . . , xk} ∧ ∀xi ∈ x.tct(xi)

tca:t(x) := tct(x)

tct1×···×tn(x) := x = (x1, . . . , xn) ∧
∧

1≤i≤n

tcti(xi)

tct1⊕···⊕tn(x) :=
∨

1≤i≤n

(x = (i, xi) ∧ tcti(xi))

tc1l(x) := x = 1

We can now translate the rule constructs

forall x : type with ϕ do R
choose x : type with ϕ do R

in TASM into the following ASM rules, where ϕ̂, R̂ are the translations for ϕ,R:

51

Jane Qiong Zhao CHAPTER 4. TYPED ABSTRACT STATE MACHINES

forall x with tctype(x) ∧ ϕ̂ do R̂

choose x with tctype(x) ∧ ϕ̂ do R̂

The problem that remains is to translate the complex term language of TASMs into
the ASM term language.

For subtype projection functions πt
t′ we may assume these are defined in the signature

of Φ(M) by auxiliary functions. Giving an inductive definition for these (similar to the
type checking functions) is not hard but lengthy, so we will skip it here. The projection
function πi is just a special case of subtype projection function. A term σ containing ιi(τ)
can be replaced by σ[ιi(τ)/(i, τ)].

If a rule r in M involves a term Ix.ϕ, we replace it using the choice rule:

choose x with ϕ do r[Ix.ϕ/x]

Here we must take care with the sequential operator ; to ensure that ϕ is interpreted in
the correct state. If r = r1; r2 we perform the above replacement for r1 and r2 separately,
since r1 might change the value at locations occurring in ϕ.

Now consider structural recursion, which presents the most complicated case. For every
partial term src[e, f, g] occurring in a rule of M, we add a controlled function SRCe,f,g to
Φ(M), which we will use to store the mapping induced by src[e, f, g]. Furthermore, we
add a unary rule computeSRCe,f,g to Φ(M), which populates SRCe,f,g as follows:

computeSRCe,f,g(x) =
if SRCe,f,g(x) = undef then

if x = ∅ then SRCe,f,g(x) := e
else if ∃z.x = {z} then

choose z with x = {z} do SRCe,f,g(x) := f(z)
else choose z1, z2 with x = z1 ∪ z2 ∧ z1 ∩ z2 = ∅ ∧ z1 6= ∅ ∧ z2 6= ∅ do

computeSRCe,f,g(z1); computeSRCe,f,g(z2);
SRCe,f,g(x) := g(SRCe,f,g(z1), SRCe,f,g(z2))

Whenever a rule r in M involves the term src[e, f, g](τ), we now replace it by

computeSRCe,f,g(τ); r[src[e, f, g](τ)/SRCe,f,g(τ)]

Again, if r = r1; r2 we perform the above replacement for r1 and r2 separately, to
ensure that τ is interpreted to the same value in both parts of the above rule.

Finally, the join is just a special case of set comprehension (see its definition), which
in turn can be expressed using structural recursion, and thus is covered as well.

Taking together these translations of rules, a rule r and its translation Φ(r) result in
the same update set. Together with the canonical correspondence between states of M
and Φ(M) we have obtained the following theorem.

Theorem 4.7. For each TASM M there is an equivalent ASM Φ(M).

Of course, this theorem also follows immediately from the main results on the expres-
siveness of ASMs in [10, 44]. However, what we need in our specific application area is also
constructiveness, i.e. in order to fully exploit the theory of ASMs for data warehousing
and OLAP systems we need a constructive translation as the one indicated above.

52

Chapter 5

Data Warehouse Design Using the
ASM Method

The ASM method presumes to start with the definition of a ground model ASM (or several
linked ASMs), which captures requirements, similar to scenarios in [98] or use-cases in
[55, 90]. All further system development is done by refining the ASMs using the general
refinement method.

The ground model captures the user requirements at a level that is close to the domain
of the to-be-built system, based on clear and elegant operational semantics, which enables
model checking by inspection or validation. The validation can be supported by execution
tools or using the program walkthrough technique. The possibility for model inspection
or validation is one of the desired properties for system design as it is impossible to
mathematically verify the system against informal user requirements. Furthermore, the
ground model allows us to do formal verification when system properties are formalised.
Some examples for formal verifications can be found in [45], and many more on the ASM
website [49].

The notion of refinement in the ASM method is not restrained by substitutivity, but
supports introduction of new features into the system. It is a method for not only moving
the model from abstract to concrete but also recording the intended design decisions in
a precise way, which facilitates divide-and-conquer for overcoming the complexity of the
design process.

Based on the ASM method, we provide a tailored refinement-based design framework
for data warehouse and OLAP system design, which breaks down the design by concerns
that are specific to the application, such as incremental design, view materialisation for
query performance, data distribution design, etc. We apply the view/schema integration
technique to overcome the integrity issue in our incremental design, which starts from one
business process, namely a single datamart, and expands to more datamarts using pure
incremental refinements. This is further supported by a set of correct rules for schema
integration introduced in Chapter 6.

In Section 5.1, we first present a general ground model for a data warehouse and OLAP
system, which is then applied in a grocery store example. This is first presented in ASM
and then in TASM, to illustrate the advantages of TASMs. We will also show how some
formalised properties of the ground model can be verified. Section 5.2 is used to describe
a refinement process that is tailored for data warehouse and OLAP system design. Based
on the refinement process, example refinements are shown in Section 5.3 with correctness
proof based on the notion of ASM refinement.

53

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

…
Data mart

Dialogue object

Data warehouses

View constructors

Star/snowflake
schema

…

Update/refresh queries

Operational
databases

…
Data mart

Dialogue object

Data warehouses

View constructors

Star/snowflake
schema

…

Update/refresh queries

Operational
databases

Figure 5.1: The general architecture of a data warehouse and OLAP

5.1 The Data Warehouse Ground Model

The basic idea of data warehousing is to separate the source data, which comes from
operational databases, from the target data, which is used by OLAP systems. While
doing so, we must keep the data warehouse in sync with the source data by regular
updates ([117]). From this viewpoint, we may specify the basic requirements of a data
warehouse and OLAP system as follows:

• the entire system consists of three components, namely the data source, also called
the operational database, the data warehouse and the OLAP system, which form the
three-tier architecture shown in Figure 5.1;

• in the operational database tier, the source data is modelled, and updates to the
data warehouse is performed upon system request;

• in the data warehouse tier, the data warehouse data and the data extraction are
modelled, and OLAP queries are answered upon system request;

• in the OLAP tier, the OLAP users and queries are modelled and managed.

5.1.1 The Operational Database ASM

We model the operational database tier by DB ASM. The basic requirements for DB
ASM is to model the source data and the updates to the data warehouse upon request.
Assuming for simplicity that all data sources are relational, the ASMs signatures would
describe the relation schemata. For example, an n-nary relation R will be modelled as
a boolean function R(n). Hence, we will define a set of boolean functions for modelling
the database relations. Further, we introduce a universe request to model the system
requests on data warehouse updates or OLAP queries. We use an external function
req:request for representing the current request to be served. Furthermore, we define
a static external function r-type:request→ { extract, open-datamart, . . . } to map the
current request to its type. Here we use extract and open-datamart for they are common
terms in data warehouse. Furthermore, the functions Si which model the data warehouse
data relations and the extraction rules extract Si are imported from the data warehouse
model for updating the data warehouse. In addition, the functions for the operational
database relations Ri are exported for constructing the extraction rules in data warehouse.

54

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

A general model for the data source DB-ASM is defined as follows:

ASM DB-ASM
IMPORT DW-ASM(S1, . . . , Sm, extract S1, . . . , extract Sm)
EXPORT R1, . . . , Rl

SIGNATURE

R1(ar1), . . . , Rl(arl),
r-type(1) (static), req(0) (external)

BODY

main = if r-type(req)= extract then

extract S1|| . . . ||extract Sm

endif

The DB ASM is straightforward. It can be shown that it captures the basic require-
ments by analysing the model line by line as follows:

• in the “IMPORT”, we have imported the functions for data warehouse relations, S1,
. . . , Sm, and the extraction rules extract S1, . . . , extract Sm, which are the queries
defined in the data warehouse for extracting data from the data source. These are
used to update the data warehouse upon system request.

• in the“EXPORT”, we have the source data R1(ar1), . . . , Rl(arl) exported so that
they can be used in the data warehouse for defining the queries for data extraction.

• in the “SIGNATURE”, we model the source data relations as R1(ar1), . . . , Rl(arl).
In addition, we model the system request by two external functions. The reason
why external functions are used is that we do not want to be tied down by the
design details of how data warehouse should be updated, such by system clock, or
by changes in the data source, at this initial stage. The external functions will be
dealt with in later refinements.

• in the main rule, the current system request is checked, and if it is of type ”extract”,
the data warehouse is updated by executing the extraction rules at one atomic step.

5.1.2 The Data Warehouse ASM

We model the data warehouse tier by DW ASM. The basic requirements for the data
warehouse module is to model the data warehouse data and the data extraction rules
using the operational database, and to answer OLAP queries.

For the data warehouse ASMs we follow the same line of abstraction as for the opera-
tional databases, i.e. using boolean functions to model the data warehouse relations. In
particular, we have the following:

• We define boolean functions S1, . . . , Sm for the data warehouse relations. For each
data warehouse relation, we define a data extraction rule, extract Si, over the op-
erational database relations. We export these functions and extraction rules for
constructing view creation rules in OLAP ASM.

• We use the same external functions req and r-type as defined in DB ASM to handle
the external requests.

55

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

• For answering OLAP queries, we define a rule open-datamart, and import functions
Vi and rules create V1 from OLAP ASM.

• To cater for the fact that the same OLAP query may be requested from multiple
users or from the same user multiple times, we use function DM Vi imported from
OLAP ASM to hold data requested by a specific user request using a unique identifier
dm. In addition, functions, such as the-matching-view for getting the specific OLAP
view and the-datamart for getting the identifier dm are imported from OLAP ASM
for OLAP query process.

The DW-ASM is defined as follows:

ASM DW-ASM
IMPORT

DB-ASM(R1, . . . , Rl)
OLAP-ASM(V1, . . . , Vn, DM V1, . . . , DM Vn,
create V1, . . . , create Vn, the-matching-view, the-datamart)

EXPORT S1 ,. . . , Sm,
extract S1, . . . , extract Sm

SIGNATURE

S1(ar1), . . . , Sm(arm),
r-type(1) (static), req(0) (external)

BODY

main = if r-type(req)=open-datamart then

open datamart(the-datamart(req)) endif

extract S1 = . . .
. . .
extract Sm = . . .

open datamart(dm) = case the-matching-view(dm) of
V1 : create V1;

forall a1, . . . , aar1 with

V1(a1, . . . , aar1) = 1 do

DM-V1(dm, a1, . . . , aar1) := 1 enddo

. . .
Vn : create Vn;

forall a1, . . . , aarn with

Vn(a1, . . . , aarn) = 1 do

DM-Vn(dm, a1, . . . , aarn) := 1 enddo

endcase

The data warehouse model DW ASM is slightly different from DB ASM, as it interacts
with both the data source and the OLAP system. Nevertheless, we can still show that it
captures the requirements by checking the model line by line:

• in the “IMPORT”, relations R1, . . . , Rl are imported from the data source, for
constructing data extraction in data warehouse. The views V1, . . . , Vn, the data-
marts DM V1, . . . , DM Vn, and the queries create V1, . . . , create Vn, which extract

56

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

data from data warehouse for the views, are imported from the OLAP ASM for
handling OLAP queries. In addition, two functions the-datamart, which maps the
open-datamart request to a specific datamart, and the-matching-view, which maps
the datamart to a specific view, are exported for use in answering individual OLAP
queries.

• in the “EXPORT”, data warehouse relations and data extraction queries are ex-
ported for updating the data warehouse in the DB ASM and constructing data
extraction in the OLAP.

• in the “SIGNATURE”, data warehouse data is modelled by S1(ar1), . . . , Sm(arm),
white the current system request is modelled by two external functions r-type (ex-
ternal), req (external), which are the same functions used in DB ASM.

• in the main rule, the current request is checked. If it is of type “open-datamart”, then
rule open datamart is called with the parameter “dm” passed by the-datamart(req).

• in the rule open datamart(dm), the corresponding view to the datamart “dm” is
created by calling the respective rule create Vi, and then copied to the datamart
DM-Vi for the specific user query request identified by “dm”.

• the queries for data warehouse data extraction are defined by the rules extract S1,
. . . , extract Sm.

5.1.3 The OLAP ASM

We model the OLAP tier by OLAP ASM. The basic requirements for the OLAP module
is to model and manage the users and the user queries.

We apply the concept of dialogue objects for managing the user queries. More details
about dialogue objects are given in Section 6.6. The general idea of dialogue objects from
[99] is that each user has a collection of open dialogue objects, i.e. opened datamarts
in our case. At any time we may get new users by the operation “login”, or the users
may create new dialogue objects by “open”, without closing the opened ones, or they
may close some of the dialogue objects, or quit when they finish with the system. Figure
5.2 illustrates the process of management of users and user queries in OLAP-ASM. Other
functionalities of OLAP include operations, such as roll-up, drill-down, slice and dice, over
the opened datamarts. For a simple ground model, we leave these functions to refinements
under requirements capturing, which is discussed in Section 5.2.

In the ground model of OLAP ASM, we define the universe user to model the user of
the system, the universe datamart to model the opened datamarts, the universe view
to model the views for the OLAP queries, and the universe operation to model the
OLAP operations issued. Over the universes, we define the function o-type:operation
→ {login, open, close, quit}, the function owner: datamart → user, the function is-
suer: operation → user, the function the-datamart:operation → datamart, which
returns the specific datamart over which an operation is performed, the function the-
view:operation → view, and the function the-matching-view:datamart → view
which gives the matching view of the datamart. We use an external function op:operation
to represent the current operation processed, registered:user for the logged-on users, and
a set of functions Vi (i = 1, . . . , n) to define the views for the OLAP queries defined in
the system. With each of the views we define a function DM-Vi to model the datamarts
corresponding to the views Vi, and holds the opened views for requests from multiple

57

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

op=login

op=quit

op=close

op=open

yes
register the user

repeat

no

user
registered

yes
close user dms,
deregister user

yes

yes
close the dm

open a dm

yes

no no

no

no

Figure 5.2: The main process in OLAP-ASM

users and multiple requests from the same users. We use the universe request to add the
requests for opening datamarts in the system. Furthermore, the data warehouse relations
are imported, and the OLAP views, the related functions, and the extraction rules are
exported.

In ASMs, the OLAP-ASM is defined as follows:

ASM OLAP-ASM
IMPORT DW-ASM(S1, . . . , Sm)
EXPORT V1, . . . , Vn, DM-V1, . . . , DM-Vn, the-matching-view, the-datamart,

create V1, . . . , create Vn

SIGNATURE

V1(ar1), . . . , Vn(arn),
DM-V1(ar1 + 1), . . . , DM-Vn(arn + 1),
o-type(1) (static),
owner(1),
issuer(1),
registered(1),

58

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

the-datamart(1),
the-view(1),
the-matching-view(1),
op(0) (external)

BODY

main = if o-type(op) = login then LOGIN
elsif if registered(issuer(op))=1 then

if o-type(op) = open then OPEN
elsif o-type(op) = close then CLOSE
elsif o-type(op) = quit then QUIT

endif

LOGIN =
registered(issuer(op)):=1

OPEN =
import dm

datamart(dm) := 1
owner(dm) := issuer(op)
the-matching-view(dm) := the-view(op)
import reqst

let reqst = (open-datamart,dm) in
request(reqst) := 1

end-import;
end-import;

CLOSE =
close datamart(the-datamart(op));
owner(the-datamart(op)) := ⊥
datamart(the-datamart(op)) := ⊥

QUIT =
let usr = issuer(op) in

forall dm with owner(dm) = usr
do close datamart(dm)

datamart(dm) := ⊥ owner(dm) := ⊥ enddo

registered(usr) := ⊥

close datamart(dm) =
case the−matching − view(dm) of
V1 : forall a1, . . . , aar1 with

DM-V1(dm, a1, . . . , aar1) = 1
do DM-V1(dm, a1, . . . , aar1) := ⊥ enddo

. . .
Vn : forall a1, . . . , aarn with

DM-Vn(dm, a1, . . . , aarn) = 1
do DM-Vn(dm, a1, . . . , aarn) := ⊥ enddo

59

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

endcase

create V1 = . . .
. . .

create Vn = . . .

The OLAP ASM is slightly more complicated than the other two ASMs. The similarity
with the other two ASMs is that it models the data and data extraction in the same way.
The difference from the other two ASMs is that it also deals with user operations. Instead
of checking the model line by line as above, we will focus on the rules, and show that it
captures the requirements by analysing the rules against Figure 5.2, the description of the
main process of the model.

• The main rule models the main process of the model.

• In the main rule we process the operations “LOGIN” and “QUIT”, which are used for
managing the users, as well as “CLOSE” and “OPEN”, which are used for managing
the user queries. This matches the set of operations defined in Figure 5.2.

• If current operation op is of type “LOGIN”, rule LOGIN is called, which registers
the user. This matches “register the user” under condition “op=login” in Figure 5.2.

• If the user is registered and the current operation op is of type “QUIT”, rule QUIT
is called, which closes all the datamarts that belong to the user, removes all the
datamarts of the user from the list of opened datamarts, removes corresponding
ownerships and deregister the user from the system. This matches “close user dms
and deregister user” under conditions “user registered” and “op=quit” in Figure 5.2.

• If the user is registered and the current operation op is of type “CLOSE”, rule
CLOSE is called, which closes the datamart by setting it to undefined, removes the
ownership of the datamart dm from the user, and removes the datamart dm from
the list of opened datamarts. This matches “close the dm” under conditions “user
registered” and “op=close” in Figure 5.2.

• If the user is registered and the current operation op is of type “OPEN”, rule OPEN
is called, which generates a unique id dm for a datamart, sets the owner of the
datamart to be the user, the matching view of the datamart to be the view in the
“OPEN” operation, and issues an “open-datamart” request. This matches “open a
dm” under conditions “user registered” and “op=open” in Figure 5.2.

5.1.4 The Grocery Store Data Warehouse - a Simple Example

Consider a grocery store chain data warehouse, an example adopted from [71, p.358].
Assume the first datamart is for the sales process. For simplicity, the OLAP query is
formulated as the total sales by shop, month and year. Its underlying schema is shown in
the HERM (Higher-order Entity-Relationship Model, [106]) diagram in Figure 5.3. The
data schema for the data source is shown in the HERM diagram in Figure 5.4. There are
five relations, namely, Shop DB, Product DB, Customer DB, Buys and Offer, of arity 4,
3, 4, 5 and 5, respectively. Based on the OLAP query, the schema for the data warehouse,
a star schema [58], is shown in Figure 5.5. It is represented by a relational database

60

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

Sales

money_sales

quantity

Timemonth

year

quarter
Timemonth

year

quarter

Shop
sid

address

Region

name

state

Figure 5.3: Schema underlying an OLAP view

schema with four relation schemata Shop, Product, Purchase and Time with arities 6, 3,
7 and 7, respectively. As shown in Figure 5.5, cid is populated in Purchase for keeping
the data at the atomic level, i.e. the most detailed level of the data in the data sources,
which is a common principle in data warehouse design [58, 53].

Based on the general model shown above, the ground model for the grocery data
warehouse is defined as follows. Note that we will use auxiliary functions Sump to indicate
summation of parameter p in a set of tuples. While it would be possible to define the
ASMs without those functions (see Section 4.7), this is done for readability. In TASMs,
these auxiliary functions will be replaced by explicit src (structural recursion) constructs.

ASM DB-ASM
IMPORT DW-ASM(Shop, Product, Time, Purchase,

extract purchase, extract shop,
extract product, extract time)

EXPORT

Store, Part, Customer DB, Buys, Offer
SIGNATURE

Store(4), Part(3), Customer DB(4),
Buys(5), Offer(5),
r-type(1) (static), req(0) (external)

BODY

main = if r-type(req) = extract then

extract purchase || extract shop
extract product || extract time

endif

To extract data for the data warehouse relations, for example, the fact table Purchase,
the following SQL query could be used:

61

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

Part Offer Store

Buys Customer

pricedate

cost

kind description sid address

cid name

address

timequantity

pid sizename

DOB

Figure 5.4: The operational database schema

select C.cid, P.pid, S.sid, Date(B.time)
Sum(B.quantity) as quantity,
Sum(B.quantity) * O.price as money sales,
Sum(B.quantity) * (O.price - O.cost) as profit,

from Part, Store S, Buys B, Offer O, Cutomer DB C

where Date(B.time) = O.date and B.cid = C.cid

and B.pid = P.pid and B.sid = S.sid

group by C.cid, P.pid, S.sid, B.time

The DW ASM model is constructed as follows:

ASM DW-ASM
IMPORT

DB-ASM(Store, Part, Buys, Offer),
OLAP-ASM(V sales, DM-V sales, the-datamart, the-matching-view, cre-

ate V sales)
EXPORT

Shop, Product, Time, Purchase,
extract purchase || extract shop
extract product || extract time

SIGNATURE

Shop(6), Product(3),
Time(4), Purchase(7),
r-type(1) (static), req(0) (external)

BODY

main = if r-type(req)=open-datamart
open datamart(the-datamart(req)) endif

extract purchase = forall i, p, s, d, p′, c with

∃t, q.Buys(t, i, p, s, q) = 1 ∧ t.date = d ∧
∃n, a.Customerdb(i, n, a) 6= ⊥ ∧ ∃k, d′.Part(p, k, d′) 6= ⊥ ∧
∃a′, n′, s′.Store(s, n′, s′, a′) 6= ⊥ ∧ Offer(p, s, d, p′, c) = 1
do let Q = Sumq({(t, q) | (i, s, p, t, q) ∈ Buys∧

62

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

Purchase

profitsales

quantity

name

Time
date

monthquarter

year

Shop

town

region
phone

state

sid

Productdescription category

pid

dayweek

cid

Figure 5.5: The data warehouse schema for sales

t.date = d}) S = Q ∗ p′ P = Q ∗ (p′ − c)
in Purchase(i, p, s, d, Q, S, P) := 1 enddo

extract shop = forall s, n, a with

∃s′.Store(s, n, s′, a) = 1
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, t, r, st, ph) := 1 enddo

extract product = forall p, k, d with

Part(p, k, d) 6= ⊥
do let p′ = p, c = k, d′ = d

in Product(p′, c, d′) := 1 enddo

extract time = forall t with
∃ c, p, s, q. Buys(c, p, s, q, t) 6= ⊥
do let d = t.date, d′ = t.day, w = t.week,

q = t.quarter,m = t.month, y = t.year
in Time(d, d′, w, q, m, t) := 1 enddo

open datamart(dm) = case the-matching-view(dm) of
V sales : create V sales ;

forall s, r, st,m, q, y, S with

V sales(s, r, st,m, q, y, S) = 1 do

DM-V sales(dm, s, r, st,m, q, y, S) := 1 enddo

endcase

The following SQL query can be used to create the view of total sales by shop, month
and year:

63

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

select S.sid, S.region, S.state,
T.month, T.quarter, T.year,
Sum(P.money sale) as money sale

from Shop S, Time T, Purchase P

where P.sid = S.sid and P.date = T.date
group by S.sid, S.region, S.state,

T.month, T.quarter, T.year

The ASM OLAP model is the following.

ASM OLAP-ASM
IMPORT DW-ASM(Shop, Product, Time, Purchase)
EXPORT V sales, DM-V sales, create V sales,

the-datamart, the-matching-view
SIGNATURE

V sales(7) DM-V sales(8),
o-type(1),
owner(1),
issuer(1),
the-datamart(1),
the-view(1),
the-matching-view(1),
op(0) (external)

BODY

main = if o-type(op) = login then LOGIN
elsif if registered(issuer(op))=1 then

if o-type(op) = open then OPEN
elsif o-type(op) = close then CLOSE
elsif o-type(op) = quit then QUIT

endif

LOGIN =
registered(issuer(op)):=1

OPEN =
import dm

datamart(dm) := 1
owner(dm) := issuer(op)
the-matching-view(dm) := the-view(op)
import reqst

let reqst = (open-datamart,dm) in
request(reqst) := 1

end-import;
end-import;

CLOSE =
close datamart(the-datamart(op));

64

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

owner(the-datamart(op)) := ⊥
datamart(the-datamart(op)) := ⊥

QUIT =
let usr = issuer(op) in

forall dm with owner(dm) = usr
do close datamart(dm)

datamart(dm) := ⊥ owner(dm) := ⊥ enddo

registered(usr) := ⊥

close datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S with

DM-V sales(the-datamart(op), s, r, st, m, q, y, S) = 1 do

DM-V sales(the-datamart(op), s, r, st, m, q, y, S) := ⊥ enddo

endcase

create V sales = forall s, r, st, m, q, y with

∃n, t, ph.Shop(s, n, t, r, st, ph) = 1∧
∃d, d′, w.Time(d, d′, w,m, q, y) 6= ⊥
do let S = Sums′

({(i, s, p, d, s′) | ∃q′, p′.
Purchase(i, s, p, d, q′, s′, p′) = 1 ∧
d.month = m ∧ d.year = y})

in V sales(s, r, st, m, q, y, S) := 1
enddo

5.1.5 The Ground Model in TASM

The database relations in the ASM models above are modelled using boolean functions of
fixed arities with no other details. This makes it impossible to compare relations, which
is needed in schema integration, nor to use any relational operations, such as projection
or join, which are well-used in data intensive applications. In the following, we present
the grocery data warehouse in typed ASM (TASM). For simplicity of presentation, we use
labels to represent the types with the constraint that they are unique and if two labels
are the same, they are of same type too. In TASM, we model database relation using a
function R of kind t → {1l}, where t is a tuple type t1× · · ·× tn. We will use the keyword
TASM instead of ASM to indicate that we now use typed ASMs.

TASM DB-ASM
IMPORT

DW-ASM(Shop, Product, Time, Purchase,
extract purchase, extract shop,
extract product, extract time)

EXPORT

Store, Part, Buys, Offer
SIGNATURE

Store:sid× name× size× address → {1l },

65

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

Part:pid× kind× description → {1l },
Customer DB:cid× name× dob× address → {1l },
Buys:time× cid× sid× pid× quantity → {1l },
Offer:pid× sid× date× price× cost → {1l },
r-type:request → rtype (static), req:request (external)

BODY

main = if r-type(req) = extract then

extract purchase || extract shop
extract product || extract time

endif

TASM DW-ASM
IMPORT

DB-ASM(Store, Part, Customer DB, Buys, Offer),
OLAP-ASM(V sales, DM-V sales, the-datamart, the-matching-view, cre-

ate V sales)
EXPORT

Shop, Product, Time, Purchase
extract purchase || extract shop
extract product || extract time

SIGNATURE

Shop:sid× name× town× region× state× phone → {1l },
Product:pid× category × description → {1l },
Time:date× day × week ×month× quarter × year → {1l },
Purchase:cid× sid× pid× date× qty × sales× profit → {1l },
r-type:request → rtype (static), req:request (external)

BODY

main = if r-type(req) = open-datamart then

open datamart(the-datamart(req)) endif

extract purchase = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ Customer DB ./ Part ./ Store ./ Offer) ∧ t.date = d
do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧

t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in Purchase(i, p, s, d, Q, S, P) := 1 enddo

extract shop = forall s, n, a with

∃s′.(s, n, s′, a) ∈ Store
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, t, r, st, ph) := 1 enddo

extract product = forall p, k, d with

(p, k, d) ∈ Part
do let p′ = p, c = k, d′ = d

in Product(p′, c, d′) := 1 enddo

66

5.1. THE DATA WAREHOUSE GROUND MODEL Jane Qiong Zhao

extract time = forall t with
∃ c, p, s, q.(c, p, s, q, t) ∈ Buys
do if Time(t.date, t.day, t.week, t.quarter, t.month, t.year) = ⊥

then Time(t.date, t.day, t.week, t.quarter, t.month, t.year) := 1
enddo

open datamart(dm) = case the-matching-view(dm) of
V sales : create V sales ;

forall s, r, st,m, q, y, S with

(s, r, st,m, q, y, S) ∈ V sales do
DM-V sales(dm, s, r, st,m, q, y, S) := 1 enddo

endcase

TASM OLAP-ASM
IMPORT DW-ASM(Shop, Product, Time, Purchase)
EXPORT V sales, DM-V sales, create V sales, main,

the-datamart, the-matching-view
SIGNATURE

V sales:sid× region× state×month× quarter × year × sales → {1l},
DM-V sales:dm× sid× region× state×month× quarter×

year × sales → {1l} ,
o-type: op → {open, close, quit} (static),
owner: datamart → user,
issuer: op → user,
the-datamart: op → datamart,
the-view: op → view,
the-matching-view: datamart → view,
op: operation (external)

BODY

main = if o-type(op) = login then LOGIN
elsif if registered(issuer(op))=1 then

if o-type(op) = open then OPEN
elsif o-type(op) = close then CLOSE
elsif o-type(op) = quit then QUIT

endif

LOGIN =
registered(issuer(op)):=1

OPEN =
import dm

datamart(dm) := 1
owner(dm) := issuer(op)
the-matching-view(dm) := the-view(op)
import reqst

let reqst = (open-datamart,dm) in
request(reqst) := 1

67

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

end-import;
end-import;

CLOSE =
close datamart(the-datamart(op));
owner(the-datamart(op)) := ⊥
datamart(the-datamart(op)) := ⊥

QUIT =
let usr = issuer(op) in

forall dm with owner(dm) = usr
do close datamart(dm)

datamart(dm) := ⊥ owner(dm) := ⊥ enddo

registered(usr) := ⊥

close datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S with

(the-datamart(op), s, r, st, m, q, y, S) ∈ DM-V sales do
DM-V sales(the-datamart(op), s, r, st, m, q, y, S) := ⊥ enddo

enddo endcase

create V sales = forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales(s, r, st, m, q, y, S) := 1
enddo

5.1.6 Reasoning about the ASM Ground Model

In the ASM method, the ground model serves as the closest translation of the user re-
quirements for the to-be-designed system. The principle of the ASM thesis is to model
the system as close as possible to the level of abstraction of the domain, such that users
and designers can verify the ground model by inspection. The other advantage of the
ground model is that its formalism makes some reasonings on the ground model possible
against formalised properties. In the following, examples of reasoning are given for the
ground model of grocery store built above.

The ASM ground model developed so far is still rather vague in the sense that it is
modelled at rather high level of abstraction. However, it already allows us to start some
first correctness checks with respect to the satisfaction of some system properties, such as
system invariants. As we adopted the dialogue object approach to data warehouses and
OLAP, we will have the following system property:

68

5.2. THE REFINEMENT-BASED DESIGN FRAMEWORK Jane Qiong Zhao

Lemma 5.1. At any time a datamart is always owned by a user. With respect to the
functions we used in the main rule in OLAP-ASM, we can formalise this requirement by

∀dm.datamart(dm) 6= ⊥ ⇒ ∃usr.owner(dm) = usr ∧ registered(usr) 6= ⊥ (5.1)

Proof. The lemma follows from how a datamart is created and maintained:

1. For the initial state, ∀dm.datamart(dm) = ⊥, the statement holds.

2. When datamart(dm) is set to 1 in the “open” rule in OLAP-ASM, the same rule
sets owner(dm) = issuer(op). Furthermore, we have the guard registered(usr) = 1
in the main rule of OLAP-ASM which ensures that the “open” rule is only called
under this condition. Hence, condition (5.1) holds.

3. When registered(usr) is set to ⊥ in the“quit” rule in OLAP-ASM, the same rule
sets datamart(dm) = ⊥ for all the dm with owner(dm) = issuer(op), which removes
all the datamarts belonging to the user. Thus, condition (5.1) still holds.

4. Ownership of a datamart only changes in three places: In the “open” rule, the owner
is set to be a registered user. In the “close” and “quit” rules where ownership of a
datamart dm is deleted, datamart(dm) is also set to ⊥. Thus condition (5.1) can
not get violated this way either.

Furthermore, we have system properties regarding the effect of operations such as ‘quit’
and ‘close’. The former closes all the datamarts belonging to the issuer of the operation,
the latter deletes a single datamart. We omit formalising these properties using transition
constraints. Again, the main rule in OLAP-ASM is consistent with these properties, too.

Finally, considering the consistency of the main rule in OLAP-ASM we have system
properties regarding the data content of the data marts, the data warehouse as such and
the underlying operational databases. The chosen rules for building datamarts render
their realisation as views over the data warehouse explicit.

5.2 The Refinement-based Design Framework

The ASM method assumes that we first set up a ground model. In particular, we have
assumed separate ASMs for the database, the data warehouse and the OLAP level. Each
of these ASMs uses separate controlled functions to model states of the system by logi-
cal structures and rules expressing transitions between these states. The ASMs are then
linked together via queries that are expressed by these transitions. The ground model
above captures only the basic requirements, further refinements are required for con-
sidering design concerns such as systems optimisation, implementation, and new OLAP
requirements. Our design method is developed based on the 3-tier model and the ASM
method. The former provides the logical structure of the system, the latter provides the
step-by-step refinement approach. In the following, we group refinements under three
categories: requirements capture, system optimisation, and system implementation. For
each category we present a set of refinement rules, in a rather abstract manner, that are
ultimately decomposed and formalised into a set of concrete rules in a later development
stage, for example, the formal rules for view integration in Chapter 6.

69

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

5.2.1 Requirements Capture

Like most software systems, our design method for data warehouse design begins with
the requirements from the user end, i.e. the OLAP system. We build data warehouse
schemas based on what OLAP needs, for example, the set of analysis queries or reports.
As this is not a one-off process due to the dynamic nature of business analysis, it is not
uncommon that we may need to deal with new OLAP requirements regularly after the data
warehouse has been implemented. In particular, our data warehouse design starts from a
data mart for a single business process, more data marts are to be added later on. The
new requirements may require changes in the data warehouse schemata, such as adding
new schemata. This type of changes can result in inconsistency in the data warehouse if
schema integration is not considered. We tackle this problem with the schema integration
technique, i.e. we integrate the set of new data schema from the new requirements with
the existing data warehouse schema to resolve the inconsistency, and at the same time we
maintain a data warehouse with little redundancy. Schema integration will be dealt with
in Chapter 6. New requirements can sometimes be presented in the form of other than
purely new queries, such as modified OLAP queries, which we will not deal with here.
Our focus here is on the incremental design of data warehouse.

Using the data warehouse/OLAP ASM ground model as a basis, we handle new OLAP
requirement, such as adding new OLAP queries, as follows: in the OLAP ASM, we define
the new OLAP functions and rules. In the data warehouse ASM, we define new functions
and rules, and modify the existing functions and rules to support the new OLAP queries.
In the database ASM, we add and change functions and rules to support the changes of
the data warehouse. In fact, we are propagating the changes gradually from the OLAP
tier down to the data warehouse tier and then to the operational database tier.

The refinements for requirement capturing are classified under conservative extension
or incremental refinement in the ASM method. That means, the existing functions will be
preserved when new features are added in the refinement. We build a refinement process
for systematically capturing new requirements in data warehouse and OLAP system design
as follows.

1. Add a new rule to the OLAP ASM: this is used to model an additional OLAP func-
tion by adding a new rule name and the definition of the rule for the new function
to the OLAP ASM.

Discussion: it is presumed that the newly added functionality is not present in the
OLAP ASM before. The new rule will work under a condition such that it is not
defined for the old machine. In such case, adding a new rule preserves the existing
functionality of the old machine. When a new rule or function is defined, we need
to decide if it should be export or import for reference.

2. Add a new controlled function to the OLAP ASM: this is used to model a view that
is needed for the support of any new OLAP function, provided the existing view
definitions are not yet sufficient.

3. Add new controlled function(s) to the DW ASM: this is used to model the schema
that is needed in supporting the new OLAP function in data warehouse tier.

4. Integrate controlled functions on the DW ASM: this is used whenever the schema is
extended. As a consequence, the view creation rules on the OLAP ASM must be

70

5.2. THE REFINEMENT-BASED DESIGN FRAMEWORK Jane Qiong Zhao

changed accordingly.

Discussion: the integration process aims to preserve the information by the notion
of schema equivalence and dominance when two schemas are integrated. This step
relates to a set of schema transformation rules which is discussed in Chapter 6.

5. Add controlled functions to the DB ASM: this is used to add new schema to support
DW ASM, provided the existing data is not sufficient.

6. Integrate controlled functions on the DB ASM: this is used whenever the schema is
extended. As a consequence, the extraction rules on the DW ASM must be changed
accordingly.

7. Change the rules on DW ASM: this is used to adapt the rules defined for extracting
data for the data warehouse relations to the changes in the data warehouse schema.
This is again an impact from schema integration.

8. Change the rules on DB ASM: this is used to adapt the rules are used in data
extraction upon data warehouse refresh request. Any changes, either new addition
or updates, to data extraction rules should be reflected in the related rules in DB
ASM.

9. Change the functions/rules on OLAP ASM: this is used to change the functions or
rules that are affected in this refinement process, such as rules that make reference
to the schemas which are changed during the integration, or rules that process the
newly added OLAP functions.

5.2.2 Optimisation

Some refinements are used to optimise the performance of the system. These refinement
rules are applied to reorganise the specification independently from the user requirements.
Refinements for system optimisation can be classified under procedural or data refinement
in the ASM method. To be tailored for data warehouse and OLAP system design, some
typical optimisation steps are considered:

1) To materialise the OLAP views. That is, to compute the OLAP queries in advance
and store them as views in the data warehouse. When the queries are called, they can
be answered by the stored views instantly from the data warehouse without waiting for
computation of the queries. This will speed up the system performance particularly
as business analysis is usually data intensive, but it also results in the issue of view
maintenance, which we will discuss further later on in Chapter 7.

2) To update the data warehouse incrementally. That is, not to recompute the queries
from scratch, as is the case in our ground model but only propagate the changes to the
data warehouse.

The tailored refinement process for systematically incorporating the above two opti-
misation steps is specified as follows:

10. Incorporate view materialisation :

(a) Add new controlled function in DW ASM : this is used to add the OLAP views
to the data warehouse as the materialised views.

71

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

Discussion: for an effective approach in view selection we can adopt some
selection process or algorithm such as the one we used in the case study later in
Chapter 7.

(b) Integrate materialised views in DW ASM : this is used to reduce redundancy that
may have occurred after more views are materialised. A set of transformation
rules can be applied, which will be discussed in detail in Chapter 6.

(c) Add new rules in DW ASM : this is used to define the transition rules to maintain
the materialised views up to date with the data warehouse changes. These rules
are called after each refreshing of the data warehouse.

(d) Change the rules in DW ASM : these rules are for opening a datamart for the
OLAP ASM. After view materialisation or view integration, these rules need to
be adapted too.

11. Incorporate incremental updates :

(a) Add monitored functions in DB ASM : this is used to define relations to store
updates of the source relations, called delta files.

(b) Add controlled functions in DW ASM : this is used to define relations to store
computed changes for data warehouse relations.

(c) Add rules in DW ASM : this is used to define the rules for computing the changes
from source relations and propagating changes into data warehouse relations.

(d) Replace rules in DB ASM : this is used to replace the refresh rules with the
rules for incremental updates.

5.2.3 Implementation

The final group of the refinements in our discussion is the system implementation refine-
ments. Refinements for system implementation can be classified under procedural or data
refinement in the ASM method. The refinements introduced in the following are mainly
designed for realising high-level design decisions such as data distribution and incremen-
tal maintenance. This group of refinements are classified under the procedural or data
refinement in the ASM method.

12. Apply implementation refinements: these refinement rules apply to the ASMs on
all three levels and consist of realising design decisions for moving the ASMs closer
to their implementation while preserving the semantics of runs. It is not our focus
here to discuss how to move specification to codes, which is thoroughly studied, for
example in [123, 78, 26], and particularly for data intensive applications in [97].

13. Distribution design: as it is common that an enterprise is geographically distributed,
data warehouse design methods should take distribution design into consideration.
More detailed discussion on distribution design is shown in Chapter 7. Our distribu-
tion design concerns the database instead of communication design. We use nodes
to describe the locations where a local data warehouse resides.

(a) Replicate the data warehouse and the OLAP ASMs: for each node in the network
assume the same copy of the data warehouse ASM and the OLAP ASM.

72

5.3. SOME REFINEMENTS Jane Qiong Zhao

(b) Remove controlled functions and rules in local OLAP ASMs: if the needed
OLAP functionality is different at different network nodes, then these rules will
simply reduce the corresponding OLAP ASM.

(c) Fragment controlled functions in local data warehouse ASMs: these rules will
reorganise and reduce a local data warehouse ASM, if the corresponding OLAP
ASM does not need all of the replicated data warehouse. The refresh rules are
then adapted accordingly.

(d) Recombine fragments in local data warehouse ASMs: these rules will reorganise
a local data warehouse ASM according to query cost considerations. The refresh
rules are then adapted accordingly.

(e) Adapt the view creation rules accordingly in local OLAP ASM: this is used when
fragmentation is implemented. The OLAP views are created over the fragments
at the local data warehouse.

5.3 Some Refinements

In the above, we have constructed a data warehouse ground model and developed a design
framework for data warehouse and OLAP system development. In the following, we will
use the grocery store as an example to present some refinements in the areas of capturing
new requirements and system optimisation. The distribution design will be presented in
Chapter 7.

5.3.1 Incorporating Roll-up and Drill-down

Roll-up and drill-down are two typical OLAP functionalities which change the granularity
of current aggregations. In the following, we use the grocery store model as an example to
show how roll-up and drill-down can be incorporated into the model using the refinement-
based method.

Example 5.1. In the grocery store ground model, we have created a view on sales by
shop, month, and year at the OLAP ASM. A roll-up operation can be used to move the
aggregation on sales from shop to region to state, or from month to quarter to year, that
is, from low to high along the dimensions Location or Time. A drill-down operation
does just the opposite, from high to low granularity.

To add the roll-up and drill-down, we proceed as follows:

1. We first apply rule #1 (Add a new rule to the OLAP ASM) to add transition
rules roll-up(dm, to) and drill-down(dm, to) on the OLAP ASM, which move the
aggregation from the current level shown in the datamart dm to the level indicated
by to.

2. To support the new operations, we apply rule #2 (Add a new controlled function to
the OLAP ASM) to add a new function up-to:operation → level, with level as a
new universe or a new type in the typed ASM. This function maps the operation
roll-up or drill-down to the level where the aggregation will be performed.

3. The operation roll-up or drill-down only needs to refer back to the original view on
which the datamart is based, as aggregation from original is more straightforward.
Since it does not result in changes in data requirement, no application of the rules
for schema integration or re-organisation is required.

73

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

4. To incorporate roll-up and drill-down as new operations, the function type and the
rule main need to be adapted by creating new conditions for the new functions to be
executed. We apply rule #8 (Change the functions/rules on OLAP ASM) resulting
in the following:

o-type: op → {login, open, close, quit, roll-up, drill-down }

main = if o-type(op) = login then LOGIN
elsif o-type(op) = open then OPEN
elsif o-type(op) = close then CLOSE
elsif o-type(op) = quit then QUIT

elsif o-type(op) = roll-up then ROLL-UP
elsif o-type(op) = roll-up then DRILL-DOWN

endif

ROLL-UP = roll-up(the-datamart(op),up-to(op))
DRILL-DOWN = drill-down(the-datamart(op),up-to(op))

There are many ways to implement the operations roll-up and drill-down. As an ex-
ample, we may simply re-aggregate from bottom to up-to(op) using the view that the
datamart is based on. Whether is for roll-up or drill-down, we may use this aggregation
rule to aggregate up to the level indicated by up-to(op).

roll-up(dm, to)=aggr(dm, to)
drill-down(dm, to)=aggr(dm, to)

aggr(dm, to) = case the-matching-view(dm) of
V sales :

if to = shop then

forall s, r, st,m, q, y, S with

(s, r, st,m, q, y, S) ∈ V sales do
DM-V sales(dm, s, r, st, m, q, y, S) := 1 enddo

elsif to = region then

forall r, st, m, q, y with

∃s, S.(s, r, st, m, q, y, S) ∈ V sales do let

S ′ = src[0, πS, +] ({(s, S) |
(s, r, st, m, q, y, S) ∈ V sales

in DM-V sales(dm,⊥, r, st,m, q, y, S ′) := 1 enddo

elsif to = state then

forall st,m, q, y with

∃s, r, S, P.(s, r, st,m, q, y, S) ∈ V sales do let

S ′ = src[0, πS, +] ({(s, r, S) |
(s, r, st, m, q, y, S) ∈ V sales

in DM-V sales(dm,⊥,⊥, st, m, q, y, S ′) := 1 enddo

. . .
endcase

74

5.3. SOME REFINEMENTS Jane Qiong Zhao

We have omitted the aggregation on the dimension Time as it is similar to what we
presented for the dimension Location above.

The above refinement extends the functionality in the old machine. What we need to
ensure is that the refinement preserves the functionality in the old machine.

Lemma 5.2. The above refinement preserves functions in the old machine.

Proof. It follows by verifying the conditions for rule applications in the machines.

• The input in both machines is op, which consists of the type of operation, the issuer,
the datamart if needed, and the corresponding view.

• If o-type(op) maps to “login” “open”, “quit”, or “close”, both machines perform the
same actions;

• If o-type(op) maps to “roll-up” or “drill-down”, the old machine does nothing as the
rules are not defined, the refined machine acts as defined.

5.3.2 Materialising OLAP Views

As OLAP queries are data intensive, performance is always a concern in data warehouse
design. Pre-computing the queries and storing the result in the data warehouse becomes
one of the design options to overcome the performance problem. What views to ma-
terialise, i.e. the view selection problem, is not our focus here. Instead we model the
corresponding changes in the data warehouse process when view materialisation is in-
corporated. In the following we apply the refinement step using the grocery store as an
example.

For each OLAP view to be materialised, we first define a function for storing the mate-
rialised view at the data warehouse, and then perform view integration on the materialised
views for reducing unnecessary redundancy. We add new transition rules for newly added
materialised views if any. Those rules are called whenever the data warehouse is refreshed,
to recompute the query over the current data warehouse. Finally, all the transition rules
in the three modules are adapted if views involved in the rules are affected in the view
integration.

Example 5.2. As our grocery store ground model supports one single OLAP view, the
changes in the view materialisation refinement do not involve view integration as shown
in the following:

TASM DB-ASM
IMPORT

DW-ASM(. . . , MV V sales, refresh-MV V sales)
. . .

BODY

main = if r-type(req) = extract then

(extract purchase || extract customer || extract shop
extract product || extract time); refresh-MV V sales

endif

75

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

TASM DW-ASM
IMPORT

. . .
EXPORT

. . .
SIGNATURE

. . .
MV V sales:sid× region× state×month× quarter × year×

sales → {1l }

BODY

. . .

refresh-MV V sales =
create V sales ;
forall s, r, st, m, q, y, S with

(s, r, st,m, q, y, S) ∈ V sales do
MV V sales(s, r, st,m, q, y, S) := 1 enddo

open datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S with

(s, r, st,m, q, y, S) ∈ MV V sales do
DM-V sales(dm, s, r, st,m, q, y, S) := 1 enddo

endcase

. . .

In the above, only the modified functions and rules in the refined model are presented.
The model shows that incorporating view materialisation in DW ASM is an internal
change and has no effects that are noticeable to the users. A more complex example on
view materialisation which involves view selection and view integration will be discussed
as a case study in Chapter 7.

As our major concern in computing data marts over the materialised views is that the
data in materialised views is consistent with the data in the data warehouse. We denote
this as ins(MV) ' ins(DW), meaning that the instances for the materialised views are the
results of executing their queries over the data warehouse instance.

Lemma 5.3. OLAP datamarts when opened, are consistent with the data warehouse in
both machines.

Proof. It follows from run induction.

• When r-type(req)=extract : after the rule application, we have ins(MV) ' ins(DW)
in the refined machine, meaning the instance of materialised views is consistent with
the instance of the data warehouse.

• When r-type(req)=open-datamart : after applying the rule open datamart, dm '
ins(DW) holds in the old machine, dm ' ins(MV), in the refined machine. While

76

5.3. SOME REFINEMENTS Jane Qiong Zhao

the data warehouse is under refreshing (this is done in a single ASM step), no OLAP
requests will be answered. Thus ins(MV) ' ins(DW) holds until next application of
extract. Hence, by the meaning of consistency, we have dm ' ins(DW) in the refined
machine.

5.3.3 Incremental Updates

In our ground model, the data warehouse is maintained by recomputing the queries from
scratch upon extraction request. Often these computations are data-intensive and thus
rather expensive. As an alternative approach for view maintenance, incremental update
has been suggested by which the data warehouse can be maintained by propagating only
the changes in the source data into the data warehouse algorithmically (e.g. [38, 36, 87]).
Incremental updates have been modelled as a refinement in our refinement process for
data warehouse design. The purpose is to provide a systematic way for adapting the
process when incremental update is incorporated.

As our focus here is not to design an algorithm for incremental updates but to show
how incremental updates can be incorporated into the data warehouse process, we adopt
the basic ideas in the approaches suggested in [38, 36, 87], that is, the changes from the
operational database are captured in some delta files, which then are used to compute the
changes to the data warehouse, and finally computed changes are propagated into the data
warehouse. In order to avoid getting involved too much in the implementation details,
we presume that in the operational applications there is a mechanism for capturing the
changes to the delta files. Furthermore, we assume that data items which used to be valid
are not to be deleted. For example, closing down a store will not result in deletion of
the store, although the store may be indicated as obsolete in the operational applications.
This assumption will allow us to keep the historical data in the data warehouse.

Another issue related to incremental updates is how to process summarised data,
especially when it is not shown explicitly, as is the case for Time in our grocery store
example. The function Time is populated using Buys in such a way that there may
be multiple tuples in Buys resulting in the same tuple to be added to Time. As we
only keep one of them, it is not straightforward to process the deletions in ∆-Buys del,
that is, you cannot decide if the tuples corresponding to the tuples in ∆-Buys del should
be deleted from Time or not, because you cannot decide if this is the only tuple which
derives the tuple in Time. This problem has been addressed in the work of incremental
updates by using bags instead of sets (e.g. [87]). As stated at the beginning, the update
algorithm is not the focus here, so we will not consider incremental update in relations
such as Time, although the way Time is populated is not efficient.

Example 5.3. Let us again use the grocery store as an example to show how the ground
model is adapted when incremental updates are incorporated.

1. We first define the functions in the DB ASM for capturing the changes as inserted
or deleted, for updates are modelled as delete-insert pair, since the last refresh from
the source relations separately.

∆-Buys ins:time× cid× sid× pid× quantity → {1l },
∆-Store ins:sid× name× size× address → {1l },
∆-Part ins:pid× kind× descriptin → {1l },
∆-Customer DB ins:cid× name× dob× address → {1l },

77

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

∆-Offer ins:pid× sid× date× price× cost → {1l },
∆-Buys del:time× cid× sid× pid× quantity → {1l },
∆-Store del:sid× name× size× address → {1l },
∆-Part del:pid× kind× descriptin → {1l },
∆-Customer DB del:cid× name× dob× address → {1l },
∆-Offer del:pid× sid× date× price× cost → {1l },

2. We take a progressive approach to incorporate the changes from the data sources.
For each of the relations Buys, Customer DB, Part, Store and Offer, we define a
controlled function in DW ASM for capturing the computed changes in Purchase
after previous updates have been completed.

∆-Purchase B ins:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase C ins:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase P ins:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase S ins:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase O ins:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase B del:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase C del:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase P del:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase S del:cid× sid× pid× date× qty × sale× profit → {1l }
∆-Purchase O del:cid× sid× pid× date× qty × sale× profit → {1l }

3. We define the following transition rules for computing the changes in Purchase in
DW ASM, for ease of reading, we define the following short forms:

Buysold = Buys ∪∆-Buys del−∆-Buys ins
Storeold = Store ∪∆-Store del−∆-Store ins
Partold = Part ∪∆-Part del−∆-Part ins
Customer DBold = Customer DB ∪∆-Customer DB del−∆-Customer DB ins
Offerold = Offer ∪∆-Offer del−∆-Offer ins

compute buys ins = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(∆-Buys ins ./ Customer DBold ./ Partold ./ Storeold ./ Offerold)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in ∆-Purchase B ins(i, p, s, d, Q, S, P) := 1 enddo

compute customer ins = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ ∆-Customer DB ins ./ Partold ./ Storeold ./ Offerold)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)

78

5.3. SOME REFINEMENTS Jane Qiong Zhao

in ∆-Purchase C ins(i, p, s, d,Q, S, P) := 1 enddo

compute part ins = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ Customer DB ./ ∆-Part ins ./ Storeold ./ Offerold)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in ∆-Purchase P ins(i, p, s, d,Q, S, P) := 1 enddo

compute store ins = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ ∆-Customer DB ins ./ Partold ./ Storeold ./ Offerold)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in ∆-Purchase S ins(i, p, s, d,Q, S, P) := 1 enddo

compute offer ins = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ Customer DB ./ Part ./ Store ./ ∆-Offer ins)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in ∆-Purchase O ins(i, p, s, d,Q, S, P) := 1 enddo

compute buys del = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(∆-Buys ins ./ Customer DBold ./ Partold ./ Storeold ./ Offerold)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in ∆-Purchase B del(i, p, s, d,Q, S, P) := 1 enddo

. . .

compute offer del = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ Customer DB ./ Part ./ Store ./ ∆-Offer del)
∧t.date = d

do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧
t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in ∆-Purchase O del(i, p, s, d, Q, S, P) := 1 enddo

We have omitted the details in computing changes using deletions as the process is
the same as for the inserts.

79

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

4. Then we define rules for propagating changes into the data warehouse in DW ASM:

prop purchase B ins= forall i, p, s, d,Q, S, P with

(i, p, s, d, Q, S, P) ∈ ∆-Purchase B ins
do if ∃Q′, S ′, P ′.(i, p, s, d, Q′, S ′, P ′) ∈ Purchase

then let (Q′, S ′, P ′).
IQ′, S ′, P ′.((i, p, s, d,Q′, S ′, P ′) ∈ Purchase) in
Purchase(i, p, s, d, Q′, S ′, P ′) := ⊥,
Purchase(i, p, s, d, Q + Q′, S + S ′, P + P ′) := 1

else Purchase(i, p, s, d, Q, S, P) := 1
enddo

prop purchase C ins= . . .

. . .

prop purchase B del= forall i, p, s, d, Q, S, P with

(i, p, s, d, Q, S, P) ∈ ∆-Purchase B del
do if ∃Q′, S ′, P ′.(i, p, s, d, Q′, S ′, P ′) ∈ Purchase

then do let (Q′, S ′, P ′).
IQ′, S ′, P ′.((i, p, s, d,Q′, S ′, P ′) ∈ Purchase) in
Purchase(i, p, s, d, Q′, S ′, P ′) := ⊥,
if ¬(Q = Q′ ∧ S = S ′ ∧ P = P ′) then

Purchase(i, p, s, d,Q−Q′, S − S ′, P − P ′) := 1 enddo

enddo

. . .

prop shop ins = forall s, n, a with

∃s′.(s, n, s′, a) ∈ ∆-Store ins
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, t, r, st, ph) := 1 enddo

prop product ins = forall p, k, d with

(p, k, d) ∈ ∆-Part ins
do let p′ = p, c = k, d′ = d

in Product(p′, c, d′) := 1 enddo

prop shop del = forall s, n, a with

∃s′.(s, n, s′, a) ∈ ∆-Store del
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, t, r, st, ph) := ⊥ enddo

prop product del = forall p, k, d with

(p, k, d) ∈ ∆-Part del
do let p′ = p, c = k, d′ = d

in Product(p′, c, d′) := ⊥ enddo

80

5.3. SOME REFINEMENTS Jane Qiong Zhao

5. We define refresh rules in DW ASM:

refresh purchase =
(compute buys ins || compute buys del
compute customer ins || compute customer del
compute store ins || compute store del
compute part ins || compute part del
compute offer ins || compute offer del);
prop purchase B ins ; prop purchase B del;
prop purchase C ins ; prop purchase C del;
prop purchase S ins ; prop purchase S del;
prop purchase P ins ; prop purchase P del;
prop purchase O ins ; prop purchase O del

refresh shop =
prop shop ins ; prop shop del

refresh product =
prop product ins ; prop product del

6. Finally we adapt the changes into the rules for incremental updates in DB ASM:

main = if r-type(req) = extract then

extract purchase || extract shop
extract product || extract time

elsif r-type(req) = refresh then

refresh purchase || refresh shop
refresh product || extract time endif

When incremental update is incorporated as an extended functionality, as the case
above, it is easy to check the refinement is correct since it preserves the existing function-
alities in the old machine. Thus it would be more meaningful to show that the two sets
of rules, one for extract, one for refresh have the same effects.

Lemma 5.4. refresh works the same as extract.

Proof. It requires to verify if the computations of the data warehouse relations are the
same by the two sets of rules.

• It is easy to verify by going through the rules that the above is the case for Shop,
Product, and Time.

• For Purchase, the proof is a bit complicated. It involves join operations among a
number of source relations and projections and aggregations, though the later two
operations are rather simple. Thus the issue is how changes can be correctly prop-
agated through the join operations. While the computation of Purchase involves
joining Buys, Customer DB, Part, Store and Offer, among other operations,
we will just use a simple example to give a sketch of the proof here.

Let us assume A = B ./ C ./ D. Following the method for refresh as above, the
changes of A is computed incrementally based on the changes of B, C, and D as
follows:

81

Jane Qiong ZhaoCHAPTER 5. DATA WAREHOUSE DESIGN USING THE ASM METHOD

– ∆AB := ∆B ./ Cold ./ Dold

– ∆AC := Bnew ./ ∆C ./ Dold

– ∆AD := Bnew ./ Cnew ./ ∆D

– ∆A := ∆AB ∪∆AC ∪∆AD.

– Anew := Aold ∪∆A.

So what we need to prove is that the following holds:

Anew = Bnew ./ Cnew ./ Dnew

All we need here is that the join ./ operator is commutative and associative, and
interacts with union ∪ in a distributive manner, that is

R1 ./ (R2 ∪R3) = (R1 ./ R2) ∪ (R1 ./ R3)

We proceed as follows:

Anew = Aold ∪∆A

= Aold ∪∆AB ∪∆AC ∪∆AD

= Bold ./ Cold ./ Dold ∪∆B ./ Cold ./ Dold ∪∆AC ∪∆AD

= (Bold ∪∆B) ./ Cold ./ Dold ∪∆AC ∪∆AD

= Bnew ./ Cold ./ Dold ∪Bnew ./ ∆C ./ Dold ∪∆AD

= Bnew ./ (Cold ∪∆C) ./ Dold ∪∆AD

= Bnew ./ Cnew ./ Dold ∪Bnew ./ Cnew ./ ∆D

= Bnew ./ Cnew ./ (Dold ∪∆D)

= Bnew ./ Cnew ./ Dnew

The proof for deletions can be constructed in the same fashion.

82

Chapter 6

View Integration

Our data warehouse design method is an incremental design method, which resembles the
bottom-up approach in [58], but is different from it in that the issue of system integrity
and data consistency is resolved by the schema integration technique. We have shown in
Chapter 5 how this technique is integrated in the refinement-based design framework.

Our schema integration is based on HERM (Higher-order Entity-Relationship Model),
an extended ER model. A review in this area is presented in Chapter 2. The set of schema
transformation rules presented in the following is based on the ones in [75], with small
modifications which are discussed in Section 6.5.

We start with the introduction of the basics of HERM in Section 6.1, and the query
language for HERM in Section 6.2, followed by the notion of schema equivalence and
dominance in Section 6.3. A pragmatic method for schema integration is given in Section
6.4. Finally, the focus of this chapter, the transformation rules of schema integration and
the corresponding formal rules in TASM are presented in Section 6.5.

6.1 HERM

As we will base our presentation on the higher-order Entity-Relationship model (HERM)
[106], we start with a brief review of the model as far as it is important for our purposes
here. In particular, we focus on algebraic and logical query languages for HERM. These
will be needed to address the important issue of defining schema dominance and equiva-
lence in a way that the expressiveness is sufficient for the integration of extended views
as needed for data warehouses. The basic case dealing only with plain views over HERM
schemata, i.e. ignoring the extensions by operations, adaptivity, etc. was already handled
in [66, 67].

The major extensions of the HERM compared with the flat ER model concern nested
attribute structures, higher-order relationship types and clusters, a sophisticated language
of integrity constraints, operations, dialogues and their embedding in development meth-
ods. Here we only review some of the structural aspects.

In the following let A denote some set of simple attributes . Each simple attribute
A ∈ A is associated with a base domain dom(A), which is some fixed countable set of
values. The values themselves are of no particular interest.

In HERM it is permitted to define nested attributes. For this take a set L of labels with
the only restriction that labels must be different from simple attributes, i.e. L ∩ A = ∅.
Definition 6.1. A nested attribute is either a simple attribute, the null attribute ⊥,
a tuple attribute X(A1, . . . , An) with pairwise different nested attributes Ai and a label

83

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

X ∈ L or a set attribute X{A} with a nested attribute A and a label X ∈ L. Let NA
denote the set of all nested attributes.

We extend dom to nested attributes in the standard way, i.e. a tuple attribute will be
associated with a tuple type, a set attribute with a set type, and the null attribute with
dom(⊥) = 1l, where 1l is the trivial domain with only one value.

In principle we could also permit other constructors than tuple and set constructors,
e.g. constructors 〈·〉 and [·] for multisets and lists. This would, however, only complicate
our presentation here without leading to additional insights. We therefore disregard these
other constructors.

On nested attributes we have a partial order ≥ defined as follows.

Definition 6.2. ≥ is the smallest partial order on NA with

• A ≥ ⊥ for all A ∈ NA,

• X{A} ≥ X{A′} ⇔ A ≥ A′ and

• X(A1, . . . , An) ≥ X(A′
1, . . . , A

′
m) ⇔ ∧

1≤i≤m

Ai ≥ A′
i.

A generalised subset of a set F ⊆ NA of nested attributes is a set G ⊆ NA of nested
attributes such that for each A′ ∈ G there is some A ∈ F with A ≥ A′.

It is easy to see that X ≥ X ′ gives rise to a canonical projection πX
X′ : dom(X) →

dom(X ′).
Let us now define the entity and relationship types and clusters in HERM using the

following compact definition.

Definition 6.3. A level-0-type E consists of a set attr(R) = {A1, . . . , Am} of nested
attributes and a key key(R). A level-k-type R (k > 0) consists of a set comp(R) =
{r1 : R1, . . . , rn : Rn} of labelled components with pairwise different labels ri, a set
attr(R) = {A1, . . . , Am} of nested attributes and a key key(R). Each component Ri is a
type or cluster of a level at most k−1, but at least one of the Ri must be level-(k−1)-type
or -cluster.

For the key we have key(R) = comp ′(R) ∪ attr ′(R) with comp ′(R) ⊆ comp(R) and a
generalised subset attr ′(R) of the set of attributes.

A level-k-cluster is C = R1 ⊕ · · · ⊕Rn with pairwise different components Ri, each of
which is a type or cluster of a level at most k. At least one of the Ri must be level-k-type,
or -cluster.

The labels ri used in components are called roles . Roles can be omitted in case the
components are pairwise different. A level-0-type E is usually called an entity type, a
level-k-type R with k > 0 is called a relationship type.

A HERM schema is a finite set S of entity types, relationship types and clusters
together with a set Σ of integrity constraints defined on S. We write (S, Σ) for a schema,
or simply S, if Σ = ∅.

Note that the notion of level has only been introduced to exclude cycles in schemata.
Besides this it has no other meaning. Conversely, if there are no cycles in a schema, then
there is a straightforward way to assign levels to the types and clusters in the schema
such that the conditions in Definition 6.3 are satisfied.

Example 6.1. The following type definitions define a HERM schema for a loan application
as it might be used by some bank:

84

6.1. HERM Jane Qiong Zhao

Security Mortgage Loan_Type Personal_Loantype typefor

Customer

w
h

o
s

e

Owes

Loan

who what

Income Obligation Account Account_Record
a

w
h

o
 who ln

accountamount
type

frequency

customer_no

name

address

date_of_birth

object

value

type

account

type

amount

frequency

begin

end

mortgage_no

amount
disagio

begin

interest_rate

object end

type conditions

interest
loan_no amount

begin

end

interest_rate
terms_of_payment

account_no

balance

record_no

amount

type

date

Figure 6.1: HERM diagram for loan application

Loan Type = (∅, { type, conditions, interest }, { type })
Customer = (∅, { customer no, name, address, date of birth },

{ customer no })
Personal Loan = ({ type : Loan Type }, { loan no, amount,

interest rate, begin, end, terms of payment }, { loan no })
Mortgage = ({ type : Loan Type }, { mortgage no, amount, disagio,

interest rate, begin, end, object }, { mortgage no })
Loan = Personal Loan ⊕ Mortgage

Account = ({ ln : Loan }, { account no, balance }, { account no })
Account Record = ({ a : Account }, { record no, type, amount,

date }, { a : Account, record no })
Owes = ({ who : Customer, what : Loan }, { begin, end },

{ who : Customer, what : Loan, begin })
Security = ({ whose : Customer, for : Mortgage }, { value, object,

type }, {whose : Customer, for : Mortgage, object })
Income = ({ who : Customer }, { type, amount, frequency, account },

{ who : Customer, account })
Obligation = ({ who : Customer }, { type, amount, frequency,

account }, { who : Customer, account })

For this it is easy to see that the types Customer and Loan Type are on level
0, because they do not have components. Level-1-types are Income, Obligation,
Mortgage and Personal Loan, because all their components are on level 0. Con-
sequently, the cluster Loan ist a level-1-cluster. The types Owes, Security and Ac-
count are then level-2-types, because all components are on level 1 or below, and finally,
Account Record is a level-3-type.

85

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

Figure 6.1 provides a graphical representation of the schema in Example 6.1. We
call this a HERM diagram. According to the common convention in Entity-Relationship
diagrams we represented types on level 0 by rectangles and types on higher levels by
diamonds. Clusters are represented by ⊕. We use directed edges from a relationship
type to each of its components, and from clusters to their components, and undirected
edges between types and their attributes. Roles names are attached to the directed edges.
Keys are marked by underlining attributes and marking the edges that correspond to
components in the key by filled dots.

As each HERM schema can be represented by such a HERM diagram, i.e. by a graph,
we can apply all graph-theoretic notions. In particular, when we talk of paths in a HERM
schema, we mean a path in the underlying undirected graph that results from ignoring
the orientation of edges in the HERM diagram.

In order to define the semantics of HERM schemata we concentrate on identifier-
semantics, also known as pointer-semantics. For this assume a countable set ID of iden-
tifiers with ID ∩ D = ∅ for all domains D used for simple attributes. Furthermore, we
associate with each type R ∈ S a representing attribute

XR = R(Xr1 , . . . , Xrn , A1, . . . , An)

with new simple attributes Xri
for each role ri and dom(Xri

) = ID, as well as a key
attribute

KR = R(Xri1
, . . . , Xri`

, A′
1, . . . , A

′
m)

for key(R) = {ri1 : Ri1 , . . . , ri` : Ri` , A
′
1, . . . , A

′
m}. Obviously, we have XR ≥ KR.

Definition 6.4. An instance of a HERM schema (S, Σ) is a family {db(R)}R∈S of finite
sets. For each type R the set db(R) consists of pairs (i, v) with i ∈ ID and v ∈ dom(XR)
subject to the following conditions:

• Identifiers are locally unique, i.e. whenever (i, v1), (i, v2) ∈ db(R), we must have
v1 = v2.

• Key values are locally unique, i.e. whenever (i1, v1), (i2, v2) ∈ db(R) hold with
πXR

KR
(v1) = πXR

KR
(v2), then we must have i1 = i2.

• Roles are always defined, i.e. whenever (i, v) ∈ db(R) and πXR

R(Xrj)(v) = i′ for rj :

Rj ∈ comp(R), then (i′, v′) ∈ db(Rj) for some v′ ∈ dom(XRj
).

• The integrity constraints in Σ are satisfied.

For each cluster C = R1⊕· · ·⊕Rk the set db(C) is the disjoint union of the sets db(Ri)
(i = 1, . . . , k).

We write inst(S, Σ) for the set of all instances over (S, Σ).

6.2 Query Languages for HERM

As for the relational data model, basic queries against a HERM schema can be formulated
both in an algebraic and a logical way. We will extend both the simple HERM algebra
and the HERM calculus in a way that we can express more queries, but let us start with
first-order queries.

86

6.2. QUERY LANGUAGES FOR HERM Jane Qiong Zhao

Definition 6.5. The HERM algebra H provides the operations σϕ (selection) with a
selection formula ϕ, πA1,...,Am (projection) with a generalised subset {A1, . . . , Am}, %f

(renaming) with a renaming function f , ./G (join) with a common generalised subset G,
∪ (union), − (difference), νX:A1,...,An with attributes A1, . . . , An (nest), and µA (unnest)
with a set attribute A.

As the details of these operations are not much different from the relational data
model, we omit the details and refer to [106].

However, in order to make the HERM algebra operational for our purposes here, we
need a little extension:

• We permit new type names R to be added to S, and use assignments R := exp
with a HERM algebra expression exp. Then applying such a query to an instance
of (S, Σ) results in an instance over (S ∪ {R}, Σ). The type or cluster definition for
R is implicitly determined by the expression exp.

• In order to satisfy the uniqueness of identifiers, such assignments involve the non-
deterministic creation of identifiers in ID for the pairs (i, v) in the added db(R).
Such identifier creation has been investigated thoroughly in [115].

• While sequences of assignments only extend the schema, we also allow dropping
types or clusters.

In summary, a HERM algebra program P has the form C1; . . . ; Cr \ S ′, where each
Ci is an assignment, say Ri := expi that extends the schema by Ri and the instance by
db(Ri), while S ′ is a subschema of S ∪ {R1, . . . , Rr}. Thus, P defines a mapping q(P)
taking instances over (S, Σ) to instances over (S ′, Σ′), though the set Σ′ of constraints is
left implicit.

The algebra may be further extended with WHILE (which introduces a fix point op-
erator), in which case we talk of the extended HERM algebra Hext. In this case we add
constructs of the form

WHILE change DO C1; . . . ; Cr END.

We obtain a logical perspective from the following simple observation. Each type
R ∈ S – or more precisely, its representing attribute XR – defines a variable in a higher-
order logic. The order depends on the depth of nesting of the attributes in attr(R). For
instance, if the set constructor is not used, we obtain a first-order variable. In fact, we
obtain a type for each such variable, where types correspond to nested attributes. Thus, a
schema defines a signature, and each instance defines a finite structure for this signature.

There are a few subtleties to be aware of. First, for clusters we have to allow particular
union variables to cope with the requirement to have disjoint unions. Second, we have to
define first the logic and then permit only those structures that are in fact models for the
theory defined by the restrictions in Definition 6.4.

Now use further variables and constants of any available type and define atoms as
follows:

• A predicative atom has the form X(t1, . . . , tn), which evaluates to true if the tuple
(t1, . . . , tn) lies in X, with a higher-order variable X and terms, i.e. variables or
constants, t1, . . . , tn such that the types of the ti and the one of X match properly.

• An equational atom has the form t1 = t2 with terms of the same type or of different
types, where one is a cluster and the other one is one of its components.

87

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

Finally, use the usual connectives ∧, ∨, →, ∃ and ∀ to define HERM logic. Then the
concept of free and bound variables is defined as usual. We write fr(ϕ) for the set of free
variables of a formula ϕ.

Definition 6.6. A HERM calculus query has the form X(x0, . . . , xn) : ϕ with a formula
ϕ of HERM logic such that fr(ϕ) ⊆ S ∪ {x1, . . . , xn} and {x1, . . . , xn} ⊆ fr(ϕ).

Obviously, we may interpret a formula ϕ provided we are given a value assignment
σ(xi) for all the variables x1, . . . , xn and an instance over (S, Σ). If according to this
interpretation the formula ϕ is interpreted as true, we obtain a tuple (σ(x0), . . . , σ(xn))
with a new identifier σ(x0) ∈ ID . The result is the set of all such tuples, and will be
bound to variable X.

It has been shown in [106] that such HERM calculus queries express exactly the same
as HERM algebra queries with non-deterministic identifier creation and assignments to
new type variables. Using sequences and a fixed-point construction yields the same ex-
pressiveness as the extended HERM algebra. We use the term extended HERM calculus
for this approach to query languages.

6.3 Schema Dominance and Equivalence

Now assume we have two schemata (S1, Σ1) and (S2, Σ2) that are to be integrated. By
“polishing” the schemata we may assume that there are no name conflicts, so we can build
the disjoint union S1 ⊕ S2. Any associations between the two schemata can be expressed
using another set of constraints Σ0, i.e. we look in fact at (S1 ⊕ S2, Σ1 ∪ Σ2 ∪ Σ0), which
becomes subject to a restructuring. Basically, we are aiming at removing redundancy
between the two schemata (expressed via Σ0), i.e. we want to replace the union of the
schemata by a new schema (S, Σ) that is equivalent to the given one. Thus, we first need
a notion of schema equivalence.

Definition 6.7. A schema (S ′, Σ′) dominates another schema (S, Σ) by means of the lan-
guage L (notation: (S, Σ) vL (S ′, Σ′)) iff there are mappings f : inst(S, Σ) → inst(S ′, Σ′)
and g : inst(S ′, Σ′) → inst(S, Σ) both expressed in L such that the composition g ◦ f is
the identity.

Definition 6.8. If we have (S, Σ) vL (S ′, Σ′) as well as (S ′, Σ′) vL (S, Σ), we say that
the two schemata are equivalent with respect to L (notation: (S, Σ) ∼=L (S ′, Σ′)).

According to [75] there are various choices for the language L leading to suitable
notions of dominance and equivalence. Here, we only consider the most general one, in
which case f and g would be expressed by computable functions. Note that this notion
of dominance is exactly what we employed for schema refinement in TASMs.

Lemma 6.9. Let M be schema refined to M′ using some abstraction predicate A, and let
S,S ′ be the schemas of M, M′. Then S ′ dominates S.

Proof. By definition of schema refinement there exist computable functions f, g

f ⊆ A ⊆ g−1

It follows immediately that g ◦ f is the identity mapping, which shows dominance.

88

6.4. SCHEMA AND VIEW INTEGRATION PROCESS Jane Qiong Zhao

Let us adopt this definition to view integration. First recall that a view is nothing but
a stored query. More precisely, a view V on a schema (S, Σ) consists of a schema SV and
a query qV with a query mapping inst(S, Σ) → inst(SV). Here, inst(S, Σ) denotes the
set of instances of schema (S, Σ).

So the view integration problem starts with two views V1 and V2 on the same schema
(S, Σ), and should result in a new integrated view V such that SV results from integration
of the schemata SV1 and SV2 , and for each instance db over (S, Σ) the two query results
qV1(db) and qV2(db) together are equivalent to qV (db).

Now, if the schemata SV1 and SV2 are “cleaned”, we may combine the queries qV1 and
qV2 into one yielding a query mapping inst(S, Σ) → inst(SV1 ∪ SV2) defined by the query
qV1∪qV2 . If we simply integrate the schemata SV1 and SV2 into SV according to the method
described above, we obtain a computable function f : inst(SV1 ∪ SV2) → inst(SV), which
constitutes a query mapping qf = f . Taking qV = qf ◦ (qV1 ∪ qV2), V becomes a view over
(S, Σ) with schema SV and defining query qV . Since qf , qV1 , qV2 are all computable and
have computable inverses, this also holds true for qV . Thus SV dominates SV1 ,SV2 .

This approach to view integration also works in the more general situation, where the
given views V1 and V2 are defined over different schemata (S1, Σ2) and (S2, Σ2), respec-
tively.

6.4 Schema and View Integration Process

We first describe a pragmatic method for guiding the schema integration process with
explanations on how this method applies to view integration. Then the transformation
rules and the formal definition of the rules are described in the following section.

1. The first step is the homogenisation of the schemata. This includes the restructuring
of the schemata turning attributes into entity types, entity types into relationship
types and vice versa. Furthermore, we add attributes and shift attributes along
hierarchies and paths. All these individual paces correspond to the application of
transformation rules. The result of the homogenisation step are schemata (S ′1, Σ′

1)
and (S ′2, Σ′

2).

2. The second step consists in adding inter-schema integrity constraints that describe
the semantic relationships between the two schemata. Formally, we obtain another
set of constraints Σ0, and thus the result of this step is a single HERM schema
(S ′1 ∪ S ′2, Σ′

1 ∪ Σ′
2 ∪ Σ0).

3. The third step is only a preparation of the following steps. Due to the expected large
size of the schemata, these are divided into modules, each of which describes a sub-
schema. Corresponding modules are identified in order to approach the integration
of modules first. If schemata are of moderate size, this step can be omitted.

4. Step four considers the integration of types on level 0, 1, etc., i.e. we start with entity
types and level-0-clusters, then proceed with relationship types and clusters on level
1, then relationship types and clusters on level 2, etc. For each level we integrate
corresponding types or clusters with respect to equality, containment, overlap and
disjointness conditions. Note that this step is similar to the work done in [60, 63, 104].

5. The fifth step deals with the integration of paths using path inclusion dependencies.

89

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

6. Finally, we consider remaining integrity constraints such as (path) functional depen-
dencies and join dependencies.

6.5 Transformation Rules

The set of rules in this section covers the rules that have been stated implicitly or explicitly
in former work by others. In particular, they are closest to the set of rules we presented in
[75], with small modifications as follows: in Rule 7, a constraint is added to ensure no part
of the key is removed; in Rule 9, the constraint is extended to ensure consistency between
two referencing relationships; Rule 13 for adding a new type is included; Rule 28 is
simplified by restricting it to a single multi-valued dependency (for multiple dependencies
we can simply apply Rule 28 multiple times); and some typos are corrected in Rule 19,
20, 22, 23, 24.

As there are many ways to integrate schemas for preserving equivalence and achieving
dominance, the set of transformation rules we provide is not complete. Our goal was to
obtain a set of rules which cover most cases occurring in practice. The set of rules can be
extended of cause, if such a need arises. We also did not attempt to minimize it - even if
a rule is technically redundant, it can still make the transformation process easier.

Our only provable claim (we also claim that they cover most practical cases, but that’s
impossible to show formally) is that the set of rules are correct by the notion of schema
equivalence and dominance. This is established in the formalisation of the rules in TASM
by constructing the abstraction predicate A and corresponding computable functions f
and g, which show that they produce a (strong) schema refinement. In principal, we
would need to show that f, g are computable, that f ⊆ A ⊆ g−1 holds, and for strong
schema refinement that A is invariant under isomorphisms. However, for all rules given
these properties will be fairly obvious, thus we omit such proofs.

The set of rules that we provided are designed for schema transformations. Hence,
data changes are only modelled in the rules. However, the corresponding changes to the
operations are incorporated in the refinement-based development process and the rules
for dialogue objects.

Furthermore, the set of rules are derived from a pragmatic process, i.e. the five-step
process as described in 6.4, which can be used as a general guidelines for application of
the rules.

In the following we will describe the transformation rules in detail. In particular, we
assume a given HERM schema (S, Σ), but each rule models the involved schemas only,
with the resulting schema being (Snew, Σnew). The new types in the new schema will be
marked with a subscript new. For better explanations we use the example Figures 6.1 from
[75] in some of the rules.

We state these rules in TASM in the form

M B aFunc = . . . , . . .

M∗ B newFunc = . . . , . . .
ϕ

with lists of function declarations above and below the bar. These lists may also include
type definitions, which we use to model clusters. The symbol =t is used to distinguish
type definitions from declarations of basic function.

The meaning of such a rule is that under some side conditions ϕ, parts of the machine
M will be replaced by new functions in a refining machine M∗. That is, all functions
above the bar will be removed, while all functions below the bar will be added to to the

90

6.5. TRANSFORMATION RULES Jane Qiong Zhao

schema of M∗. The use of placeholders for function names, labels and types, which can
then be instantiated for concrete refinements, is common practice, thus we omit a more
formal definition of our language for refinement rules.

We restrict the refinements to be on the set of functions that represent the relations
in the machines, i.e. are part of the schema. In the refinement rules dealing with keys,
we assume keys to be defined as supertypes of relations.

We then proceed with specifying the side condition under which the rule can be ap-
plied, the constraints which the new machine must comply with, and the corresponding
abstraction predicate A and the two computable functions f and g for (strong) schema
refinement.

6.5.1 Schema Restructuring

The first group of rules addresses the aspect of schema restructuring which will be used
in the homogenisation step 1 of our method.

Rule 1. Replace a tuple attribute X(A1, . . . , Am) in an entity or relationship type R by
the attributes A1, . . . , Am. The resulting type Rnew will replace R. For X(A′

1, . . . , A
′
n) ∈

key(R) with Ai ≤ A′
i we obtain A′

1, . . . , A
′
n ∈ key(Rnew).

M B R = X(t11 × · · · × t1m)× t2 × · · · × tn → {1l}
M∗ B Rnew = t11 × · · · × t1m × t2 × · · · × tn → {1l}

with the constraints:

A′
1, . . . , A

′
l ∈ key(Rnew) if X(A′

1, . . . , A
′
l) ∈ key(R)

The corresponding abstraction predicate A:

∀x1, . . . , xn+m−1.(Rnew(x1, . . . , xn+m−1) = 1

⇔ R(X(x1, . . . , xm), . . . , xn+m−1) = 1)

The corresponding computable queries f and g are constructed as

Rnew := {(x1, . . . , xn+m−1) | (X(x1, . . . , xm), . . . , xn+m−1) ∈ R}
and

R := ({X(x1, . . . , xm), . . . , xn+m−1) | (x1, . . . , xn+m−1) ∈ Rnew},
respectively.

There is no side condition for the rule to be applied.

Example 6.2. Assume an entity type Customer with a tuple attribute name as follows:

Customer = (∅, { customer no, name(first-name,last-name), address,
date of birth }, { customer no })

Applying Rule 1, we have

Customer = (∅, { customer no, first-name,last-name, address,
date of birth }, { customer no })

91

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

This rule includes the simple case, where R is an entity type, which could be treated
as a separate rule.

Rule 2. Replace a component r : R′ in a relationship type R by lower level components
and attributes. Let the new type be Rnew. For comp(R′) = {r1 : R1, . . . , rn : Rn} we get

comp(Rnew) = comp(R) − {r : R′} ∪ {r(r)
1 : R1, . . . , r

(r)
n : Rn} with new role names r

(r)
i

composed from ri and r and attr(Rnew) = attr(R) ∪ attr(R′). In the case r : R′ ∈ key(R)
and key(R′) = {ri1 : Ri1 , . . . , rik : Rik , A1, . . . , Am} we obtain key(Rnew) = key(R) − {r :

R′} ∪ {r(r)
i1

: Ri1 , . . . , r
(r)
ik

: Rik , A1, . . . , Am}, otherwise we have key(Rnew) = key(R).

M B R′ = r′ : id× t′ → {1l}
R = r′ : ref × t → {1l}

M∗ B R′ = r′ : id× t′ → {1l}
Rnew = t′ × t → {1l}

with the constraints:

key(Rnew) =

{
key(R)− {r : R′} ∪ key(R′) if r′ ∈ key(R)

key(R) otherwise

The corresponding abstraction predicate A:

∀x, x′.(Rnew(x′, x) = 1 ⇔ ∃r.(R′(r, x′) = 1 ∧R(r, x) = 1))

The corresponding computable queries f and g are constructed as

Rnew := {(x, x′) | ∃r.((r, x) ∈ R ∧ (r, x′) ∈ R′)}

and

R := {(r, x) | ∃x′.((x′, x) ∈ Rnew ∧ (r, x′) ∈ R′)},
respectively.

There is no side condition for the rule to be applied.

Example 6.3. Let us look at the relationship types Mortgage and Security and the
entity type Loan Type in Figures 6.1:

Loan Type = (∅, { type, conditions, interest }, { type })
Mortgage = ({ type : Loan Type }, { mortgage no, amount, disagio,

interest rate, begin, end, object }, { mortgage no })
Security = ({ whose : Customer, for : Mortgage }, { value, object,

92

6.5. TRANSFORMATION RULES Jane Qiong Zhao

type }, {whose : Customer, for : Mortgage, object })

Applying Rule 2 on Security to replace the component for : Mortgage, we obtain

Security = ({ whose : Customer, for type : Loan Type }, { value, object,
type, mortgage no, amount, disagio, interest rate, begin, end, object },
{whose : Customer, for type : Loan Type, object })

Rule 3. Replace a component r : R′ in a relationship type R by lower level components
and attributes. Let the new type be Rnew. For R′ is an entity type, we get comp(Rnew) =
comp(R) − {r : R′} with attr(Rnew) = attr(R) ∪ attr(R′). In the case r : R′ ∈ key(R)
and key(R′) = {A1, . . . , Am} we obtain key(Rnew) = key(R) − {r : R′} ∪ {A1, . . . , Am},
otherwise we have key(Rnew) = key(R).

This is a simplified rule of Rule 2 in the case, where R′ is an entity type. We omit the
details here.

Rule 4. Replace a cluster C = C1⊕· · ·⊕Cn with a cluster component Ci = Ci1⊕· · ·⊕Cim

by a new cluster C = C1 ⊕ · · · ⊕ Ci−1 ⊕ Ci1 ⊕ · · · ⊕ Cim ⊕ Ci+1 ⊕ · · · ⊕ Cn.

M B C =t C1 ⊕ . . . Ci ⊕ · · · ⊕ Cn

Ci =t Ci1 ⊕ · · · ⊕ Cim

M∗ B Ci =t Ci1 ⊕ · · · ⊕ Cim

C =t C1 ⊕ · · · ⊕ Ci−1 ⊕ Ci1 ⊕ · · · ⊕ Cim ⊕ Ci+1 ⊕ · · · ⊕ Cn

Since a cluster is not a relation but a type definition, this rule does not change the
structure of the relation. Thus there is no side condition, or corresponding abstract
predicate, or computable functions required.

Example 6.4. Let us assume the following:

Account = personal ⊕ Business
personal = deposit ⊕ cheque.

Applying Rule 4 on Account, we obtain

Account = deposit ⊕ cheque ⊕ Business.

Rule 5. Replace a relationship type R with a cluster component r : C (C = C1⊕· · ·⊕Cn)
by a new cluster Cnew = R1,new ⊕ · · · ⊕ Rn,new and new relationship types Ri,new with
comp(Ri,new) = comp(R) − {r : C} ∪ {ri : Ci} and attr(Ri,new) = attr(R). For r : C ∈
key(R) we obtain key = key(R)− {r : C} ∪ {r : Ci}, otherwise take key = key(R).

93

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

M B R = C × t → {1l}
C =t C1 ⊕ · · · ⊕ Cn

M∗ B C =t C1 ⊕ · · · ⊕ Cn

Cnew =t r1,new : ref ⊕ · · · ⊕ rn,new : ref
R1,new = r1,new : id× C1 × t → {1l}
. . .
Rn,new = rn,new : id× Cn × t → {1l}

with the constraints:

key(Ri,new) =

{
key(R)− {r : C} ∪ {ri : Ci} if r ∈ key(R)

key(R) otherwise

for all i such that 1 ≤ i ≤ n.

The corresponding abstraction predicate A:

∀x, r.(∃id.Ri,new(id, r, x) = 1 ⇔ R((1, r), x) = 1 ∧
· · · ∧ ∃id.Rn,new(id, r, x) = 1 ⇔ R((n, r), x) = 1)

The corresponding computable queries f and g:

R1,new := {(id, r, x) | ((1, r), x) ∈ R}
. . .

Rn,new := {(id, r, x) | ((n, r), x) ∈ R}
and

R :=
n⋃

i=1

{(r, x) | ∃id.((id, r, x) ∈ Ri,new)}

respectively.

There is no side condition for the rule to be applied. However, we need to change all
relations referencing R to reference Cnew instead.

Example 6.5. In the loan application of Section 6.1 we have:

Account = ({ ln : Loan }, { account no, balance }, { account no })
Loan = Home Loan ⊕ Mortgage

Personal Loan = ({ type : Loan Type }, { loan no, amount,
interest rate, begin, end, terms of payment }, { loan no })

Mortgage = ({ type : Loan Type }, { mortgage no, amount, disagio,
interest rate, begin, end, object }, { mortgage no })

94

6.5. TRANSFORMATION RULES Jane Qiong Zhao

Applying the Rule 5 on the relationship type Account, we get:

Account = Personal Account ⊕ Mortgage Account

Personal Account = ({ for : Personal Loan },
{ account no, balance }, { account no })

Mortgage Account = ({ for : Mortgage }, { account no, balance },
{ account no })

In the case of the restructuring Rules 1 – 5 we get the resulting schema equivalent to
the original schema. The next rule only guarantees that the resulting schema dominates
the old one.

Rule 6. Replace a key-based inclusion dependency R′[key(R′)] ⊆ R[key(R)] by new re-
lationship types Rnew with comp(Rnew) = {r′ : R′, r : R} = key(Rnew) and attr(Rnew) = ∅
together with participation cardinality constraints card(Rnew, R) = (0, 1) and card(Rnew, R′) =
(1, 1).

M B R = r : id× t → {1l}
R′ = r′ : id× t′ → {1l}

M∗ B R = r : id× t → {1l}
R′ = r′ : id× t′ → {1l}
Rnew = r′ : ref × r : ref → {1l}

ϕ

with the side condition ϕ:

R′[key(R′)] ⊆ R[key(R)]

The constraints:

card(R′
new, R) = (0, 1) ∧ card(R′

new, R′) = (1, 1)

The corresponding abstraction predicate A:

∀r, r′.(Rnew(r′, r) = 1 ⇔ ∃x, x′.(R(r, x) = 1 ∧R′(r′, x′) = 1)

The corresponding computable queries f :

Rnew := {(r′, r) | ∃x, x′.(r, x) ∈ R ∧ (r′, x′) ∈ R′}
and g is an identity function since nothing has changed in relation R and R′ in the

refined machine.

Example 6.6. Let us assume two relationship types Staff and Supervisor as follows:

Staff = (∅, { staff id, start date, dept id }, { staff id })

Supervisor = (∅, { staff id, student id, start date, end date }, { staff id })

95

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

To apply Rule 6 on the following dependency:

Supervisor[key(Supervisor)] ⊆ Staff[key(Staff)]

We obtain a new relationship type Staff supervisor and two cardinality constraints
as follows:

Staff supervisor = ({ as:Supervisor, being:Staff }, ∅, { as:Supervisor,

being:Staff })

card(Staff supervisor,Staff) = (0, 1)

card(Staff supervisor,Supervisor) = (1, 1)

The last two restructuring rules allow to switch between attributes and entity types
and between entity and relationship types. The Rule 7 and 8 guarantee schema equiva-
lence.

Rule 7. Replace an entity type E with A ∈ attr(E) and A /∈ key(E) by Enew such that
attr(Enew) = attr(E) − {A} and key(Enew) = key(E) hold. Furthermore, introduce an
entity type E ′

new with attr(E ′
new) = {A} = key(E ′

new) and a new relationship type Rnew

with comp(Rnew) = {rnew : Enew, r′new : E ′
new} = key(Rnew) and attr(Rnew) = ∅. Add the

cardinality constraints card(Rnew, Enew) = (1, 1) and card(Rnew, E ′
new) = (1,∞).

M B E = A : ta × t → {1l}
M∗ B Enew = r1 : id× A : ta → {1l}

E ′
new = r2 : id× t → {1l}

Rnew = r1 : ref × r2 : ref → {1l}

ϕ

with the side condition ϕ:
A /∈ key(E)

The constraints:

key(Enew) = key(E) ∧ card(Rnew, Enew) = (1, 1) ∧ card(Rnew, E ′
new) = (1,∞)

The corresponding abstraction predicate A:

∀a, x (∃r1, r2.(Enew(r1, a) = 1 ∧ E ′
new(r2, x) = 1 ∧Rnew(r1, r2) = 1) ⇔ E(a, x) = 1)

The corresponding computable queries f and g:

Enew := {(h(a), a) | ∃r, x.(r, a, x) ∈ E}‖
E ′

new := {(r, x) | ∃a.(r, a, x) ∈ E}‖
Rnew := {(h(a), r) | ∃x.(r, a, x) ∈ E}

96

6.5. TRANSFORMATION RULES Jane Qiong Zhao

and

E := {(a, x) | ∃r, r′.((r, a) ∈ Enew ∧ (r′, x) ∈ E ′
new ∧ (r, r′) ∈ Rnew)},

respectively, for some fixed computable injective function h : A : ta → r1 : id.

Example 6.7. Let us look at the entity type:

Customer = (∅, { customer no, name, address, date of birth },
{ customer no })

we then take address as the attribute A, applying the Rule 7, we obtain:

Customer new = (∅, { customer no, name, date of birth },
{ customer no })

Customer′ new = (∅, { address }, { address })

C address = ({ c:Customer new, a:Customer′ new },
∅, { c:Customer new, a:Customer′ new })

with the cardinality constraints:

card(C address,Customer new) = (1,1) and
card(C address,Customer′ new) = (1,∞)

Rule 8. Replace a relationship type R with comp(R) = {r1 : R1, . . . , rn : Rn} and the
cardinality constraints card(R,Ri) = (xi, yi) by a new entity type Enew with attr(Enew) =
attr(R) = key(Enew) and n new relationship types Ri,new with comp(Ri,new) = {ri :
Ri, r : Enew} = key(Ri,new) and attr(Ri,new) = ∅. Replace the cardinality constraints by
card(Ri,new, Ri) = (1, yi) and card(Ri,new, Enew) = (1,∞).

M B R = r : id× r1 : ref × · · · × rn : ref × t → {1l}
M∗ B Enew = e : id× t → {1l}

R1,new = r1 : ref × e : ref → {1l}
. . .
Rn,new = rn : ref × e : ref → {1l}

ϕ

with the the side condition ϕ:

comp(R) ∩ key(R) = ∅
and the constraints:

97

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

• key(Enew) = key(R), key(Ri,new) = {r : Enew};

• card(Ri,new, Ri) = (xi, yi) and card(Ri,new, Enew) = (1, 1),
where card(R, Ri) = (xi, yi)

The corresponding abstraction predicate A:
∀r1, . . . , rn, x.
(∃e.(Enew(e, x) = 1 ∧R1(r1, e) = 1 ∧ . . . Rn(rn, e) = 1) ⇔ R(r1, . . . , rn, x) = 1)

The corresponding computable queries f and g:

Enew := {(e, x) | ∃r1, . . . , rn.(e, r1, . . . , rn, x) ∈ R}‖
R1,new := {(r1, e) | ∃r2, . . . , rn, x.(e, r1, . . . , rn, x) ∈ R}‖ . . . ‖
Rn,new := {(rn, e) | ∃r1, . . . , rn−1, x.(e, r1, . . . , rn, x) ∈ R}‖

and

R := {(e, r1, . . . , rn, x) | (e, x) ∈ Enew ∧ (r1, e) ∈ R1,new ∧ · · · ∧ (rn, e) ∈ Rn,new},
respectively.

Example 6.8. Let us look at the loan application of Section 6.1 again where we have the
relationship type and the cardinality constraints as follows:

Owes = ({ who : Customer, what : Loan }, { begin, end },
{ who : Customer, what : Loan, begin })

card(Owes,Customer) = (0,m)
card(Owes,loan) = (0,n)

Applying Rule 8, we obtain:

Period = (∅, { begin, end }, {begin, end })
Customer new = ({ who: Customer, when: Period }, ∅,

{ who: Customer, when: Period })
Loan new = ({ what: Loan, when: Period }, ∅, { what: Loan,

when: Period })

and cardinality constraints:

card(Customer new,Customer) = (1,m)
card(Customer new,Period) = (1,∞)
card(Customer new,Loan) = (1, n)
card(Loan new,Period) = (1,∞)

98

6.5. TRANSFORMATION RULES Jane Qiong Zhao

In the case of Rule 8 explicit knowledge of the key of R allows to sharpen the cardinality
constraints.

6.5.2 Shifting Attributes

The second group of rules deals with the shifting of attributes. This will also be used in
the homogenisation step 1 of our method. Rule 9 allows to shift a synonymous attribute
occurring in two subtypes, i.e. whenever tuples agree on the key they also agree on
that attribute, to be shifted to a supertype. This rule leads to a dominating schema.
Conversely, Rule 10 allows to shift an attribute from a supertype to subtypes, in which
case schema equivalence can be verified.

Rule 9. For comp(Ri) = {ri : R} and A ∈ attr(Ri)−key(Ri) (i = 1, 2) together with the
constraint ∀t, t′ ∈ R1∪R2.t[r] = t′[r] ⇒ t[A] = t′[A] ∧∀t ∈ R. ∃t′ ∈ R1∪R2.t

′[r] = t replace
the types R, R1 and R2 such that attr(Rnew) = attr(R)∪{A}, comp(Ri,new) = {ri : Rnew}
and attr(Ri,new) = attr(Ri)− {A} hold.

M B R = r : id× t → {1l}
R1 = A : ta × t1 × r : ref → {1l}
R2 = A : ta × t2 × r : ref → {1l}

M∗ B Rnew = r : id× A : ta × t → {1l}
R1,new = t1 × r : ref → {1l}
R2,new = t2 × r : ref → {1l}

ϕ

with the side condition ϕ:

∀t, t′ ∈ R1 ∪R2.t[r] = t′[r] ⇒ t[A] = t′[A] ∧ ∀t ∈ R. ∃t′ ∈ R1 ∪R2.t
′[r] = t[r]

The corresponding abstraction predicate A:

∀a, x1, x2, x.((∃r.Rnew(r, a, x) = 1 ∧R1,new(x1, r) = 1

⇔ ∃r.(R(r, x) = 1 ∧R1(a, x1, r) = 1)∧
(∃r.Rnew(r, a, x) = 1 ∧R2,new(x2, r) = 1

⇔ ∃r.(R(r, x) = 1 ∧R2(a, x2, r) = 1))

The corresponding computable queries f and g:

R1,new := {(x1, r) | ∃a.(a, x1, r) ∈ R1}‖
R2,new := {(x2, r) | ∃a.(a, x2, r) ∈ R2}‖

Rnew := {(r, a, x) | (r, x) ∈ R ∧ (∃x1.(a, x1, r) ∈ R1 ∨ ∃x2.(a, x2, r) ∈ R2))}
and

R1 := {(a, x1, r) | ∃x.(r, a, x) ∈ Rnew ∧ (x1, r) ∈ R1,new}‖
R2 := {(a, x2, r) | ∃x.(r, a, x) ∈ Rnew ∧ (x2, r) ∈ R2,new}‖

R := {(r, a) | ∃x.(r, a, x) ∈ Rnew}

99

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R

R1 R2

A A

Rnew

R1,new R2,new

A

Figure 6.2: The relationship types before and after application of Rule 9

respectively.

Example 6.9. An example is shown in Figure 6.2.

Rule 10. For comp(Ri) = {ri : R} (i = 1, . . . , n) and A ∈ attr(R) − key(R) together
with the constraint ∀t ∈ R.∃t′ ∈ Ri.t

′[ri] = t replace the types such that attr(Rnew) =
attr(R)− {A}, comp(Ri,new) = {ri : Rnew} and attr(Ri,new) = attr(Ri) ∪ {A} hold.

M B R = r : id× A : ta × t → {1l}
R1 = r : ref × t1 → {1l}
. . .
Rn = r : ref × tn → {1l}

M∗ B Rnew = rnew : id× t → {1l}
R1,new = rnew : ref × t1 × A : ta → {1l}
. . .
Rn,new = rnew : ref × tn × A : ta → {1l}

ϕ

with the side condition ϕ being:

A ∈ attr(R)− key(R) and ∀t ∈ R.∃t′ ∈ Ri.t
′[r] = t[r]

The corresponding predicate A:

∀x, a, x1, . . . , xn

((∃r.Rnew(r, x) = 1 ∧R1,new(r, x1, a) = 1
⇔ ∃r.(R(r, a, x) = 1 ∧R1(r, x1) = 1) ∧ · · · ∧

(∃r.Rnew(r, x) = 1 ∧Rn,new(r, xn, a) = 1
⇔ ∃r.(R(r, a, x) = 1 ∧Rn(r, xn) = 1))

The corresponding computable queries f and g:

Rnew := {(r, x) | ∃a.(r, a, x) ∈ R}‖
R1,new := {(r, x1, a) | (r, x1) ∈ R1 ∧ ∃x.(r, a, x) ∈ R}‖ . . . ‖
Rn,new := {(r, xn, a) | (r, xn) ∈ Rn ∧ ∃x.(r, a, x) ∈ R}

100

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R

A

R1
... Rn

Rnew

R1,new Rn,new
...

A A

Figure 6.3: The relationship types before and after application of Rule 10

and
R := {(r, a, x) | (r, x) ∈ Rnew ∧ ∃x1.(r, x1, a) ∈ R1,new

∧ · · · ∧ ∃xn.(r, xn, a) ∈ Rn,new}‖
R1 := {(r, x1) | ∃a.(r, x1, a) ∈ R1,new}‖ . . . ‖
Rn := {(r, xn) | ∃a.(r, xn, a) ∈ Rn,new}

respectively.

Example 6.10. An example is shown in Figure 6.3.

The next two rules Rule 11 and 12 concern the reorganisation of paths and the shifting
of attributes along paths. In both cases we obtain a dominating schema. Rule 11 could
be split into two rules dealing separately with binary and unary relationship types Rn.

Rule 11. For a path P ≡ R1−· · ·−Rn and a relationship type R with rn : Rn ∈ comp(R)
together with path cardinality constraints card(P,R1) ≤ (1, 1) ≤ card(P,Rn) replace R
such that comp(Rnew) = comp(R)−{rn : Rn}∪{r1,new : R1} with a new role r1,new holds.

M B R = rn : ref × t → {1l}
R1 = r1 : id× [r2 : ref]× t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× tn → {1l}

M∗ B Rnew = r1 : ref × t → {1l}
R1 = r1 : id× [r2 : ref]× t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× tn → {1l}

ϕ

where [ri : ref](1 ≤ i ≤ n) models a possible reference to type Ri, due to the path
definition P ≡ R1 − · · · − Rn covering all possible path directions, as depicted in Figure
6.4. We say that [ri : ref] is realised, denoted by [ri+1 : ref] ≡ ri+1 : ref iff [ri : ref]
models an actual reference to Ri.

The side condition ϕ:

101

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

Ri

Ri-1

Ri+1

Ri

Ri-1

Ri+1

Ri

Ri-1

Ri+1

Ri

Ri-1

Ri+1

Figure 6.4: The possible path directions

• card(P, R1) ≤ (1, 1) ≤ card(P, Rn), and

• P ≡ R1 − · · · −Rn holds, which means:

∀i(1 ≤ i < n).([ri+1 : ref] ≡ ri+1 : ref in Ri) xor ([ri : ref] ≡ ri : ref in Ri+1)

The corresponding predicate A:

∀rn, x.(R(rn, x) = 1 ⇔
∃r1, . . . rn−1, x1, . . . , xn.(Rnew(r1, x) = 1) ∧R1(πT1(r1, r2, x1)) = 1 ∧

R2(πT2(r2, r1, r3, x2)) = 1 ∧ · · · ∧Rn(πTn(rn, rn−1, xn)) = 1)

where Ti is the source type of Ri, i.e. we have Ri = Ti → {1l}. πTi
(ri, ri−1, ri+1, xi)

projects the tuple (ri, ri−1, ri+1, xi) onto Ti.

The corresponding computable queries f and g:

Rnew := {(h(Sr1), x) | Sr1 = {r1 | ∃r2, . . . , rn, x1, . . . , xn.(πT1(r1, r2, x1) ∈ R1 ∧
πT2(r2, r1, r3, x2) ∈ R2 ∧ · · · ∧ πTn(rn, rn−1, xn) ∈ Rn ∧ (rn, x) ∈ R)} 6= ∅}

and
R := {(rn, x) | ∃r1, . . . rn−1, x1, . . . , xn−1.((r1, x) ∈ Rnew ∧ πT1(r1, r2, x1) ∈ R1 ∧

πT2(r2, r1, r3, x2) ∈ R2 ∧ · · · ∧ πTn(rn, rn−1, xn) ∈ Rn)}

respectively, for some fixed computable selection function h with the property h(S) ∈
S.

Example 6.11. An example is shown in Figure 6.5.

102

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R

Rn

........
.

R1

Rnew

R1

.....
.

Rn

Figure 6.5: The relationship types before and after application of Rule 11

Rule 12. For a path P ≡ R1 − · · · − Rn with A ∈ attr(Rn), A /∈ key(Rn), and
path cardinality constraints card(P, R1) ≤ (1, 1) ≤ card(P, Rn) replace R1, Rn such that
attr(R1,new) = attr(R1) ∪ {A} and attr(Rn,new) = attr(Rn)− {A} hold.

M B R1 = r1 : id× [r2 : ref]× t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× A : ta × tn → {1l}

M∗ B R1,new = r1,new : id× [r2 : ref]× A : ta × t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn,new = rn,new : id× tn → {1l}

ϕ

where [ri : ref](1 ≤ i ≤ n) models a possible reference to type Ri, due to the path
definition P ≡ R1 − · · · − Rn covering all possible path directions, as depicted in Figure
6.4. We say that [ri : ref] is realised, denoted by [ri+1 : ref] ≡ ri+1 : ref iff [ri : ref]
models an actual reference to Ri.

The side condition ϕ:

• A /∈ key(Rn), and

• card(P, R1) = (1, 1) ≤ card(P,Rn), and

• P ≡ R1 − · · · −Rn,which means:

∀i(1 ≤ i < n).([ri+1 : ref] ≡ ri+1 : ref in Ri) xor ([ri : ref] ≡ ri : ref in Ri+1);

The corresponding predicate A:

∀r1, . . . , rn, a, x1, . . . , xn.
([R2(πT2(r2, r1, r3, x2)) = 1 ∧ · · · ∧Rn−1(πTn−1(rn−1, rn−2, rn, xn)) = 1] ⇒

103

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R1

Rn

.....

A

R1,new

Rn,new

A

......

Figure 6.6: The relationship types before and after application of Rule 12

[R1(πT1(r1, r2, x1)) = 1 ∧Rn(πTn(rn, rn−1, a, xn)) = 1 ⇔
R1,new(πT1,new(r1, r2, a, x1)) = 1 ∧Rn,new(πTn,new(rn, rn−1, xn)) = 1])

where Ti is the source type of Ri, i.e. we have Ri = Ti → {1l}. πTi
(ri, ri−1, ri+1, xi)

projects the tuple (ri, ri−1, ri+1, xi) onto Ti.

The corresponding computable queries f and g:

Rn,new := {πTn,new(rn, rn−1, xn) | ∃a.πTn(rn, rn−1, a, xn) ∈ Rn}‖
R1,new := {πT1,new(r1, r2, a, x1) | ∃r3, . . . , rn, x2, . . . , xn.

(πT1(r1, r2, x1) ∈ R1 ∧ πT2(r2, r1, r3, x2) ∈ R2 ∧ · · · ∧
πTn(rn, rn−1, a, xn) ∈ Rn}

and
Rn := {πTn(rn, rn−1, a, xn) | ∃r1, r2, . . . , rn−2, x1, . . . , xn−1.

(πT1,new(r1, r2, a, x1) ∈ R1,new ∧ πT2(r2, r1, r3, x2) ∈ R2 ∧ · · · ∧
πTn,new(rn, rn−1, xn) ∈ Rn,new}‖

R1 := {πT1(r1, r2, x1) | ∃a.πT1,new(r1, r2, a, x1) ∈ R1,new}

respectively.

Example 6.12. An example is shown in Figure 6.6.

6.5.3 Schema Extension

The third group of rules deal with the schema extensions. This either concerns new
attributes, new types, new subtypes or the simplification of hierarchies. These rules are
needed in step 1 of our method.

Rule 13. Add a new type R. In such case we obtain a dominant schema.

M∗ B R = ` : label × t

With a new type added we get a dominant schema. The corresponding abstraction
predicate A is simply defined as true. The corresponding computable queries f and g can

104

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R Rnew

A

Figure 6.7: The relationship types before and after application of Rule 14

be defined as identity function.

Rule 14. Add a new attribute A to the type R, i.e. attr(Rnew) = attr(R) ∪ {A}. In
addition, the new attribute may be used to extend the key, i.e. we may have key(Rnew) =
key(R) ∪ {A}.

M B R = t → {1l}
M∗ B Rnew = A : ta × t → {1l}

with no side condition.

The corresponding abstraction predicate A:

∀x.(∃a.Rnew(a, x) = 1 ⇔ R(x) = 1)

The corresponding computable queries f and g:

Rnew := {(a, x) | (x) ∈ R}, for a constant a

and

R := {(x) | ∃a.(x, a) ∈ Rnew}

respectively.

Example 6.13. An example is shown in Figure 6.7.

Adding a new attribute A by Rule 14 does not change the cardinality of the type R,
i.e. card(R) = card(Rnew). This rule always results in a dominant schema.

The next two rules allow to introduce a new subtype via selection or projection on
non-key-attributes. In both cases we have schema equivalence.

Rule 15. For a type R introduce a new relationship type Rnew with comp(Rnew) = {r :
R} = key(Rnew) and add a constraint Rnew = σϕ(R) for some selection formula ϕ.

105

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

M B R = r : id× t → {1l}
M∗ B R = r : id× t → {1l}

Rnew = r : ref → {1l}

with a constraint:
Rnew = σϕ(R)

for some selection formula ϕ.

The corresponding abstraction predicate A:

∀r.(Rnew(r) = 1 ⇔ ∃x.ϕ(x) = 1 ∧R(r, x) = 1)

The corresponding computable queries f :

Rnew := {(r) | ∃x.(ϕ(x) = 1 ∧ (r, x) ∈ R)}
and g an identity function, respectively.

Example 6.14. Let us look at the loan application again. We may use this rule to create a
type called Elderly from the type Customer with ϕ being date of birth ≤ 1940, which
can be used in speeding up the process when Customer is big.

Rule 16. For a type R and attributes A1, . . . , An ∈ attr(R) such that there are no Bi ∈
key(R) with Ai ≥ Bi (for projection on non-key-attributes) introduce a new relationship
type Rnew with comp(Rnew) = {r : R} = key(Rnew) and attr(Rnew) = {A1, . . . , An}, and
add a constraint Rnew = πA1,...,An(R).

M B R = r : id× A1 : t1 × . . . An : tn × t → {1l}
M∗ B R = r : id× A1 : t1 × . . . An : tn × t → {1l}

Rnew = r : ref × A1 : t1 × . . . An : tn → {1l}
ϕ

with the side condition ϕ:

∀Bi ∈ key(R) we have Ai � Bi.

The constraint:
key(Rnew) = {r : ref}

The corresponding abstraction predicate A:

∀x1, . . . , xn, r.((Rnew(r, x1, . . . , xn) = 1) ⇔ ∃x.R(r, x1, . . . , xn, x) = 1)

106

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R

A1 ...An

R

R'new

A1...An

A1...An

Figure 6.8: The relationship types before and after application of Rule 16

The corresponding computable queries f :

Rnew := {(r, x1, . . . xn) | ∃x.(r, x1, . . . xn, x) ∈ R}
and g an identity function, respectively.

Example 6.15. An example is shown in Figure 6.8.

The last rule 17 in this group allows to simplify hierarchies.

Rule 17. Replace types R, R1, . . . , Rn with comp(Ri) = {ri : R} = key(Ri) and
card(Ri, R) = (1, 1) (i = 1, . . . , n) by a new type Rnew with comp(Rnew) = comp(R),

attr(Rnew) = attr(R) ∪
n⋃

i=1

attr(Ri) and key(Rnew) = key(R).

M B R = r : id× t → {1l}
R1 = r : ref × t1 → {1l}
. . .
Rn = r : ref × tn → {1l}

M∗ B Rnew = r : id× t× t1 · · · × tn → {1l} ϕ

with the side condition ϕ:

comp(Ri) = {ri : R} = key(Ri) ∧ card(R,Ri) = (1, 1)(i = 1, . . . , n)

The constraint:
key(Rnew) = key(R)

The corresponding abstraction predicate A:

∀x1, . . . , xn, r, x.(R′
new(r, x, x1, . . . , xn) = 1 ⇔

(R(r, x) = 1 ∧R1(r, x1) = 1 ∧ · · · ∧Rn(r, xn) = 1))

107

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

A

R

R1

Rn

........

A1

An

Rnew

A1A

An
...

Figure 6.9: The relationship types before and after application of Rule 17

The corresponding computable queries f and g:

Rnew := {(r, x, x1, . . . xn) | (r, x) ∈ R ∧ (r, x1) ∈ R1 ∧ · · · ∧ (r, xn) ∈ Rn}

and

R := {(r, x) | ∃x1, . . . xn.((r, x, x1, . . . , xn) ∈ Rnew)}‖
R1 := {(r, x1) | ∃x, x2, . . . , xn.(r, x, x1, . . . , xn) ∈ Rnew}‖ . . . ‖

Rn := {(r, xn) | ∃x, x1, . . . , xn−1.(r, x, x1, . . . , xn) ∈ Rnew}

respectively.

Example 6.16. An example is shown in Figure 6.9.

6.5.4 Type Integration.

The fourth group of rules deals with the integration of types in step 4 of our method.
Rule 18 considers the equality case, Rule 19 considers the containment case, and Rule
20 covers the overlap case. Note that these transformation rules cover the core of the
approaches in [60, 104, 63].

Rule 18. If R1 and R2 are types with key(R1) = key(R2) and we have the constraint
R1[key(R1)∪X] = h(R2[key(R2)∪Y]) for some X ⊆ comp(R1)∪attr(R1), Y ⊆ comp(R2)∪
attr(R2) and a bijective mapping h, then replace these types by Rnew with comp(Rnew) =
comp(R1)∪(comp(R2)−Y −key(R2)), attr(Rnew) = attr(R1)∪(attr(R2)−Y −key(R2))∪
{D} and key(Rnew) = key(R1) ∪ {D} and an optional new distinguishing attribute D.

M B R1 = K1 : tk1 ×X : tx × t1 → {1l}
R2 = K2 : tk2 × Y : ty × t2 → {1l}

M∗ B Rnew = K1 : tk1 ×X : tx × t1 × t2 → {1l} ϕ

108

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R1'

R1 R2

R'2

YX

Rnew

R'1

R'2

X

Figure 6.10: The relationship types before and after application of Rule 18

with the side condition ϕ:

K1 = K2 ∧R1[K1 ∪X] = h(R2[K2 ∪ Y]),

where K1 and K2 are the keys, h is a fixed computable bijective mapping.

The corresponding abstraction predicate A:

∀k1, x, x1, x2.(Rnew(k1, x, x1, x2) = 1

⇔ R1(k1, x, x1) = 1 ∧R2(h
−1(k1, x), x2) = 1)

The corresponding computable queries f and g:

Rnew := {(k1, x, x1, x2) | (k1, x, x1) ∈ R1 ∧ (h−1(k1, x), x2) ∈ R2}
and

R1 := {(k1, x, x1) | ∃x2.(k1, x, x1, x2) ∈ Rnew}‖
R2 := {(h−1(k1, x), x2) | ∃x1.(k1, x, x1, x2) ∈ Rnew}

respectively.

Example 6.17. An example is shown in Figure 6.10.

When X and Y are empty, then Rule 18 merges two types by combining the two at-
tribute sets.

Rule 19. If R1 and R2 are types with key(R1) = key(R2) and the constraint R2[key(R2)∪
Y] ⊂ h(R1[key(R1) ∪ X] holds for some X ⊆ comp(R1) ∪ attr(R1), Y ⊆ comp(R2) ∪
attr(R2) and a bijective mapping h, then replace R1 by R1,new with comp(R1,new) =
comp(R1), attr(Rnew) = attr(R1)∪{D} and key(Rnew) = key(R1)∪{D} and an optional
new distinguishing attribute D. Furthermore, replace R2 by R2,new with comp(R2,new) =
{rnew : R1,new} ∪ (comp(R2)− Y − key(R2)), attr(R2,new) = attr(R2)− Y − key(R2) and
key(R2,new) = {rnew : R1,new}.

109

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R'1

R1 R2

R'2

X Y

R1,new

R2,new

R'1

R'2

X

Figure 6.11: The relationship types before and after application of Rule 19

M B R1 = r1 : id×K1 : tk1 ×X : tx × t1 → {1l}
R2 = K2 : tk2 × Y : ty × t2 → {1l}

M∗ B R1 = r1 : id×K1 : tk1 ×X : tx × t1 → {1l}
R2,new = r1 : ref × t2 → {1l}

ϕ

with the side condition ϕ:

K1 = K2 ∧R2[K2 ∪X] ⊆ h(R1[K1 ∪ Y]),

where K1 and K2 are the keys, h is a fixed computable bijective mapping.

The corresponding abstraction predicate A:

∀k, x, x1, x2, r.(R1(r, k, x, x1) = 1 ⇒
(R2(h(k, x), x2) = 1 ⇔ R2,new(r, x2) = 1))

The corresponding computable queries f and g:

R2,new := {(r, x2) | ∃k, x.((k, x, x2) ∈ R2 ∧ ∃x1.(r, h(k, x), x1) ∈ R1}
and

R2 := {(k, x, x2) | ∃r.((r, x2) ∈ R2,new ∧ ∃x1.(r, h(k, x), x1) ∈ R1,new)}
respectively.

Example 6.18. An example is shown in Figure 6.11.

Rule 20. If R1 and R2 are types with key(R1) = key(R2) such that for X ⊆ comp(R1)∪
attr(R1), Y ⊆ comp(R2) ∪ attr(R2) and a bijective mapping h the constraints

R2[key(R2) ∪ Y] ⊆ h(R1[key(R1) ∪X]) ,

R2[key(R2) ∪ Y] ⊇ h(R1[key(R1) ∪X]) and

R2[key(R2) ∪ Y] ∩ h(R1[key(R1) ∪X]) = ∅

110

6.5. TRANSFORMATION RULES Jane Qiong Zhao

are not satisfied (the first two cases are covered by Rule 18 and 19, the last one has no
case for integration) then replace R1 by R1,new with comp(R1,new) = {r1,new : Rnew} ∪
(comp(R1) − X − key(R1)), attr(R1,new) = attr(R1) − X − key(R1) and key(R1,new) =
{r1,new : Rnew}, replace R2 by R2,new with comp(R2,new) = {rnew : R1,new} ∪ (comp(R2)−
Y −key(R2)), attr(R2,new) = attr(R2)−Y −key(R2) and key(R2,new) = {rnew : R1,new} and
introduce a new type Rnew with comp(Rnew) = comp(R1) ∩ (key(R1) ∪X), attr(Rnew) =
attr(R1) ∩ (X ∪ key(R1) ∪ {D}, and key(Rnew) = key(R1) ∪{D} and an optional new
distinguishing attribute D.

M B R1 = K1 : tk1 ×X : tx × t1 → {1l}
R2 = K2 : tk2 × Y : ty × t2 → {1l}

M∗ B R1,new = r : ref × t1 → {1l}
R2,new = r : ref × t2 → {1l}
Rnew = r : id×K1 : tk1 ×X : tx → {1l}

ϕ

with the side condition ϕ:

K1 = K2

where K1 and K2 are the keys.

The guideline: apply the rule when none of the following hold:

R2[key(R2) ∪ Y] ⊆ h(R1[key(R1) ∪X]),

R2[key(R2) ∪ Y] ⊇ h(R1[key(R1) ∪X]) and

R2[key(R2) ∪ Y] ∩ h(R1[key(R1) ∪X]) = ∅
with a fixed computable bijective mapping h.

The corresponding abstraction predicate A:
∀k, x, x1, x2.

((∃r.(Rnew(r, k, x) = 1 ∧R1,new(r, x1) = 1) ⇔ R1(k, x, x1) = 1) ∧
(∃r.(Rnew(r, k, x) = 1 ∧R2,new(r, x2) = 1) ⇔ R2(h

−1(k, x), x2) = 1))

The corresponding computable queries f and g:

R1,new := {(z(k), x1) | ∃x.(k, x, x1) ∈ R1‖
R2,new := {(z(k), x2) | ∃x.(h(k, x), x2) ∈ R2‖

Rnew := {(z(k), k, x) | ∃x1.(k, x, x1) ∈ R1 ∨ ∃x2.(h(k, x), x2) ∈ R2}

and

R1 := {(k, x, x1) | ∃r.((r, k, x) ∈ Rnew ∧ (r, x1) ∈ R1,new)‖
R2 := {(h(k, x), x2) | ∃r.((r, k, x) ∈ Rnew ∧ (r, x2) ∈ R2,new)}

respectively, for some fixed computable injective function z : K1 → id.

111

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R'1

R1 R2

R'2

X Y

Rnew

R2,new

R'1

R'2

X

R1,new

Figure 6.12: The relationship types before and after application of Rule 20

Example 6.19. An example is shown in Figure 6.12.

Rule18-20 could each be split into several rules depending on f being the identity or
not and the necessity to introduce D or not. In all cases we obtain dominance. Rule 21
considers the case of a selection condition, in which schema equivalence holds.

Rule 21. If R and R′ are types with comp(R′)∪attr(R′) = Z ⊆ comp(R)∪attr(R) such
that the constraint R′ = σϕ(πZ(R)) holds for some selection condition ϕ, then omit R′.

M B R = Z : tz × t → {1l}
R′ = Z : tz → {1l}

M∗ B R = Z : tz × t → {1l} ϕ

with side condition ϕ:

R′ = σψ(πZ(R))

for some selection condition ψ.

The corresponding abstraction predicate A:

∀z.(R′(z) = 1 ⇔ ∃x.R(z, x) = 1 ∧ ψ(z) = 1)

The corresponding computable queries g:

R′ := {(z) | ∃x.(z, x) ∈ R1 ∧ ψ(z) = 1}

and f an identity function.

Example 6.20. An example is shown in Figure 6.13.

112

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R

R'

XZ

Z

R

XZ

Figure 6.13: The relationship types before and after application of Rule 21

6.5.5 Handling Integrity Constraints.

The fifth group of rules to be applied in step 5 of our method concerns transformations
originating from path inclusion constraints. Rule 22 allows us to change a relationship
type. This rule leads to equivalent schemata. Rule 23 allows to introduce a relationship
type and a join dependency. Finally, Rule 24 handles a condition under which a relation-
ship type may be omitted. Both Rule 23 and Rule 24 guarantee dominance.

Rule 22. If there are paths P ≡ R−R1 and P ′ ≡ R′−R1 with {r1 : R1} ∈ comp(R) and
{r′1 : R1} ∈ comp(R′) such that the constraint P [R1] ⊆ P ′[R1] holds, then replace R in
such a way that comp(Rnew) = comp(R) − {r1 : R1} ∨ {rnew : R′}, attr(Rnew) = attr(R)
and key(Rnew) = key(R) − {r1 : R1} ∪ {rnew : R′} if {r1 : R1} ∈ key(R), key(Rnew) =
key(R), otherwise.

M B R1 = r1 : id× t1 → {1l}
R = r1 : ref × t → {1l}
R′ = r′ : id× r1 : ref × t′ → {1l}

M∗ B R1 = r1 : id× t1 → {1l}
R′ = r′ : id× r1 : ref × t′ → {1l}
Rnew = r′ : ref × t → {1l}

ϕ

with side condition ϕ:

P [R1] ⊆ P ′[R1]

The constraints:

key(Rnew) =

{
key(R)− {r1 : R1} ∪ {r′ : R′} if {r1 : R1} ∈ key(R)

key(R) otherwise

The corresponding abstraction predicate A:

∀r1, x.(R(r1, x) = 1 ⇔
∃r′, x′.(Rnew(r′, x) = 1 ∧R′(r′, r1, x

′) = 1))

113

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R R1

R'
R' R1

Rnew

Figure 6.14: The relationship types before and after application of Rule 22

The corresponding computable queries f and g:

Rnew := {(h(Sr′), x) | Sr′ = {r′ | ∃r1.((r1, x) ∈ R ∧ ∃x′.(r′, r1, x
′) ∈ R′)} 6= ∅}

and

R := {(r1, x) | ∃r′.((r′, x) ∈ Rnew ∧ ∃x′.(r′, r1, x
′) ∈ R′)}

respectively, where h is a fixed computable function with the property h(S) ∈ S.

Example 6.21. An example is shown in Figure 6.14.

Rule 23. If there are paths P ≡ R−R1 and P ′ ≡ R′−R1 with {r1 : R1} ∈ comp(R) and
{r′1 : R1} ∈ comp(R′) such that the constraint P [R1] = P ′[R1] holds, then replace R and R′

by Rnew such that comp(Rnew) = (comp(R)−{r1 : R1})∪(comp(R′)−{r′1 : R1})∪{r1,new :
R1}, attr(Rnew) = attr(R) ∪ attr(R′) and key(Rnew) = (key(R)− {r1 : R1}) ∪ (key(R′)−
{r′1 : R1}) ∪ {r1,new : R1}, if {r1 : R1} ∈ key(R) or {r′1 : R1} ∈ ∪key(R′), or key(Rnew) =
key(R) ∪ key(R′) hold. Add the join dependency Rnew[X, r1,new] ./ Rnew[r1,new, Y] ⊆
Rnew[X, r1,new, Y], where X = attr(R) and Y = attr(R′).

M B R1 = r1 : id× t1 → {1l}
R = r1 : ref × t → {1l}
R′ = r1 : ref × t′ → {1l}

M∗ B R1 = r1 : id× t1 → {1l}
Rnew = r1 : ref × t× t′ → {1l}

ϕ

with side condition ϕ:

P [R1] = P ′[R1]

The constraint:

Rnew[t, r1,new] ./ Rnew[r1,new, t′] ⊆ Rnew[t, r1,new, t′], and

key(Rnew) =

(key(R)− {r1 : R1}) ∪ (key(R′)− {r1 : R1}) ∪ {r1,new : R1}
if {r1 : R1} ∈ key(R) ∪ key(R′)

key(R) otherwise

114

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R
R1

R'

X

R1

X
Rnew

Y

Y

Figure 6.15: The relationship types before and after application of Rule 23

The corresponding abstraction predicate A:

∀r1, x, x′(Rnew(r1, x, x′) = 1 ⇔ R(r1, x) = 1 ∧R(r1, x
′) = 1)

The corresponding computable queries f and g:

Rnew := {(r1, x, x′) | (r1, x) ∈ R ∧ (r1, x
′) ∈ R′}

and

R := {(r1, x) | ∃x′.(r1, x, x′) ∈ Rnew}‖
R′ := {(r1, x

′) | ∃x.(r1, x, x′) ∈ Rnew}
respectively.

Example 6.22. An example is shown in Figure 6.15.

Rule 24. If there are paths P ≡ R1−R2−· · ·−Rn and P ′ ≡ R1−R−Rn with comp(R) =
{r1 : R1, rn : Rn} and attr(R) = ∅ such that the constraint P [R1, Rn] = P ′[R1, Rn] holds,
then omit R.

M B R1 = r1 : id× [r2 : ref]× t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× tn → {1l}
R = r1 : ref × r2 : ref → {1l}

M∗ B R1 = r1 : id× [r2 : ref]× t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× tn → {1l}

ϕ

where [ri : ref](1 ≤ i ≤ n) models a possible reference to type Ri, due to the path
definition P ≡ R1 − · · · − Rn covering all possible path directions, as depicted in Figure
6.4. We say that [ri : ref] is realised, denoted by [ri+1 : ref] ≡ ri+1 : ref iff [ri : ref]
models an actual reference to Ri.

115

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R1

R2 Rn

R

....

R1

RnR2
...

Figure 6.16: The relationship types before and after application of Rule 24

The side condition ϕ:

P [R1, Rn] = P ′[R1, Rn]

The corresponding predicate A:

∀r1, rn.(R(r1, rn) = 1 ⇔
∃r2, . . . rn−1, x1, . . . , xn.(R1(πT1(r1, r2, x1)) = 1 ∧

R2(πT2(r2, r1, r3, x2)) = 1 ∧ · · · ∧Rn(πTn(rn, rn−1, xn)) = 1)

where Ti is the source type of Ri, i.e. we have Ri = Ti → {1l}. πTi
(ri, ri−1, ri+1, xi)

projects the tuple (ri, ri−1, ri+1, xi) onto Ti.

The corresponding computable queries g:

R := {(r1, r2) | ∃r2, . . . rn−1, x1, . . . , xn.(R1(πT1(r1, r2, x1)) = 1 ∧
R2(πT2(r2, r1, r3, x2)) = 1 ∧ · · · ∧Rn(πTn(rn, rn−1, xn)) = 1)}

and f an identity function.

Example 6.23. An example is shown in Figure 6.16.

The final group of transformation rules Rule 25-28 permits to handle remaining con-
straints such as functional dependencies, path functional dependencies, and join depen-
dencies. All these constraints are described in detail in [106]. The rules refer to step 6 of
our method. Rule 25 handles vertical decomposition in the presence of a functional depen-
dency. Rule 26 allows to simplify a key in the presence of a path functional dependency.
Rule 27 introduces a new entity type in the presence of a path functional dependency.
Finally, Rule 28 replaces a multi-ary relationship type by binary relationship types in the
presence of a join dependency. The four rules lead to dominating schemata.

Rule 25. If a functional dependency X → A with a generalised subset X of attr(E) and
an attribute A ∈ attr(E)−X holds on an entity type E, but X → key(E) does not hold,
then remove A from attr(E) and add a new entity type E ′

new with attr(E ′
new) = X ∪ {A}

and key(E ′
new) = X.

116

6.5. TRANSFORMATION RULES Jane Qiong Zhao

A

...

X

Enew

E'new

X ...

A
E

X

Figure 6.17: The relationship types before and after application of Rule 25

M B E = X : tx × A : ta × t → {1l}
M∗ B Enew = X : tx × t → {1l}

E ′
new = X : tx × A : ta → {1l}

ϕ

with side condition ϕ:

X → A and X → key(E) does not hold

The constraints:

key(E ′
new) = X

The corresponding predicate A:

∀x1, x.(Enew(x, x1) = 1 ⇔ ∃a.E(x, a, x1) = 1)∧
∀a, x.(E ′

new(x, a) = 1 ⇔ ∃x1.E(x, a, x1) = 1)

The corresponding computable queries f and g:

Enew := {(x, x1) | ∃a.(x, a, x1) ∈ E}‖
E ′

new := {(x, a) | ∃x1.(x, a, x1) ∈ E}

and

E := {(x, a, x1) | (x, a) ∈ E ′
new ∧ (x, x1) ∈ Enew}

respectively.

Example 6.24. An example is shown in Figure 6.17.

117

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

Rule 26. For a path P ≡ R1−R−R2 with comp(R) = {r1 : R1, r2 : R2} and attr(R) = ∅
such that the path functional dependency X → key(R2) holds for a generalised subset X
of attr(R1) replace key(R) by {r1 : R1}.

M B R1 = r1 : id×X : tx × t1 → {1l}
R2 = r2 : id× t2 → {1l}
R = K : (r1 : ref × r2 : ref) → {1l}

M∗ B R1 = r1 : id×X : tx × t1 → {1l}
R2 = r2 : id× t2 → {1l}
R = K : (r1 : ref)× r2 : ref → {1l}

ϕ

where K represents the key.
The side condition ϕ:

X → key(R2)

Since the change has no impact on the capacity of the information in either machines,
no corresponding predicate A or computable query f or g is required.

Example 6.25. Let us assume the following:

R1 = {(1, a), (2, a)}, R = {(1, 1, 2), (2, 2, 2)}, R2 = {(1, b), (2, c)}

where the 1st column in the tuples are the keys, the 2nd and 3rd in R are the references
to R1 and R2 respectively. This is an example with the conditions set in the Rule 26 held.
We can apply the rule to obtain:

R = {(1, 2), (2, 2)}

with the original key removed and the reference to R1 as the key instead.

Rule 27. For a path P ≡ R1−· · ·−Rn such that the path functional dependency X → A
holds for a generalised subset X of attr(R1) and A ∈ attr(Rn) add a new entity type Enew

with attr(Enew) = X ∪ {A} and key(Enew) = X.

M B R1 = r1 : id× [r2 : ref]×X : tx × t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× A : ta × tn → {1l}

M∗ B R1 = r1 : id× [r2 : ref]×X : tx × t1 → {1l}
R2 = r2 : id× [r1 : ref]× [r3 : ref]× t1 → {1l}
. . .
Rn = rn : id× [rn−1 : ref]× A : ta × tn → {1l}
Enew = X : tx × A : ta → {1l}

ϕ

where [ri : ref](1 ≤ i ≤ n) models a possible reference to type Ri, due to the path
definition P ≡ R1 − · · · − Rn covering all possible path directions, as depicted in Figure

118

6.5. TRANSFORMATION RULES Jane Qiong Zhao

R1

Rn

...

X

A

R1

Rn

...

X

A

Enew

X

A

Figure 6.18: The relationship types before and after application of Rule 27

6.4. We say that [ri : ref] is realised, denoted by [ri+1 : ref] ≡ ri+1 : ref iff [ri : ref]
models an actual reference to Ri.

The side condition ϕ:

X → A on P ≡ R1 − · · · −Rn

The constraint:

key(Enew) = X

The corresponding predicate A:

∀x, a.(Enew(x, a) = 1 ⇔
∃r1, . . . rn, x1, . . . , xn.(R1(πT1(r1, r2, x, x1)) = 1∧

R2(πT2(r2, r1, r3, x2)) = 1 ∧ · · · ∧Rn(πTn(rn, rn−1, a, xn)) = 1)

where Ti is the source type of Ri, i.e. we have Ri = Ti → {1l}. πTi
(ri, ri−1, ri+1, xi)

projects the tuple (ri, ri−1, ri+1, xi) onto Ti.

The corresponding computable queries f :

Enew := {(x, a) | ∃r1, . . . rn, x1, . . . , xn.(R1(πT1(r1, r2, x, x1)) = 1 ∧
R2(πT2(r2, r1, r3, x2)) = 1 ∧ · · · ∧Rn(πTn(rn, rn−1, a, xn)) = 1)}

and g an identity function.

Example 6.26. An example is shown in Figure 6.18.

Rule 28. Let X ∪ Y ∪ Z = attr(R) ∪ comp(R) such that R[X,Y] ./ R[X, Z] ⊆ R holds,
then replace R by R1,new and R2,new with attr(R1,new) = X ∪Y and attr(R2,new) = X ∪Z.

M B R = X : tx × Y : ty × Z : tz → {1l}
M∗ B R1,new = X : tx × Y : ty → {1l}

R2,new = X : tx × Z : tz → {1l}
ϕ

119

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

R1,new R2,new

X Y X Z

R

X Y

Z

Figure 6.19: The relationship types before and after application of Rule 28

with side condition ϕ:

R[X, Y] ./ R[X, Z] ⊆ R

The corresponding predicate A:

∀x, y, z.((R(x, y, z) = 1 ⇔ R1,new(x, y) = 1 ∧R2,new(x, z) = 1)

The corresponding computable queries f and g:

R1,new := {(x, y) | ∃z.R(x, y, z) = 1}‖
R2,new := {(x, z) | ∃y.R(x, y, z) = 1}

and

R := {(x, y, z) | (x, y) ∈ R1,new ∧ (x, z) ∈ R2,new}

respectively.

Example 6.27. An example is shown in Figure 6.19.

6.6 Dialogue Types

We have seen that the major functionality on the OLAP tier can be expressed by views
that are extended by operations, such as roll-up or drill-down, that is exactly the idea
underlying dialogue types. However, we simplify the original definition from [99] omitting
the subtle distinction between hidden and visible parts. We also omit hierarchies of
dialogue types.

Definition 6.10. A dialogue type D over a HERM schema (S, Σ) consists of a view
VD = (SD, qD), in which SD consists of a single entity type E, and a set O of dialogue
operations. Each dialogue operation (d-operation for short) in O consists of

• an operation name op,

• a list of input parameters i1 : D1, . . . , ik : Dk with domain names Di,

• an (optional) output domain Dout,

120

6.7. TRANSFORMATION RULES FOR DIALOGUE TYPES Jane Qiong Zhao

• a subattribute sel of the representing attribute XE, and

• a d-operation body, which is built from usual programming constructs operating on
instances over (S, Σ) and constructs for creating and deleting dialogue objects.

Whenever we are given an instance db over (S, Σ), the defining query qD produces an
instance over SD, i.e. a set of pairs (i, v) with i ∈ ID and v ∈ dom(XE), each of which
will be called a dialogue object of type D. At any time only a subset of qD(db) will be
available, the set of active dialogue objects. These represent the active user dialogues in
an abstract way.

The presented value v may be projected to πXE
sel (v), which represents the data that

must be selected by the user as a prerequisite for executing operation op. Once this data
is selected and the operation op is started, further input for the parameters i1, . . . , ik will
be requested from the user – using e.g. so-called dialogue boxes [99] – and the execution
of op will update the database db and result in a new set of active dialogue objects.

6.7 Transformation Rules for Dialogue Types

As user dialogues are an invaluable source of information in requirements engineering, we
may usually assume that we know about dialogue objects before the defining queries and
the underlying database schema is fixed. Therefore, view integration is an unavoidable
design task. In addition, we will always be confronted with the desire to rearrange the
“data marts”, i.e. the dialogue types that define the OLAP functionality. This problem
also appears in database applications other than OLAP.

Therefore, the additional problem is to adapt the d-operations that are used for the
functionality presented to a data warehouse user. For this we define further transformation
rules. However, these additional transformation rules have to be understood as follow-on
rules for the case that one of the rules Rule 1-28 is not just applied to schemata or views,
but to dialogue types. Thus, we obtain additional changes to the selection attribute sel
and the body of d-operations. As these changes are the corresponding changes resulted
from view integration in dialogue types, they are so simple and straight forward that we
will not provide formal rules as that given above.

Rule 29. In case Rule 1 is applied to a dialogue type, whenever X(A′
1, . . . , A

′
k) (k ≤ m)

appears in sel or in the body of a d-operation, replace it by A′
1, . . . , A

′
k.

Rule 30. In case Rule 2 is applied to a dialogue type, whenever r appears in sel or in

the body of a d-operation, replace it by r
(r)
1 , . . . , r

(r)
n .

We may ignore Rule 4 and 5, as clusters have not been allowed in dialogue types.
There is also nothing to add for Rule 6, as this introduces a new type, so operations have
to be defined for that type.

Rule 31. In case Rule 7 is applied to a dialogue type omit A in sel or in the body of a
d-operation, whenever it appears.

Rule 32. In case Rule 8 is applied to a dialogue type omit r1, . . . , rn in sel or in the
body of a d-operation, whenever it appears.

These extensions capture the first group of rules dealing with schema restructuring.
For the second group of rules dealing with the shifting of attributes we obtain the following
extension rules in case the rules are applied to dialogue types.

121

Jane Qiong Zhao CHAPTER 6. VIEW INTEGRATION

Rule 33. In case Rule 9 is applied to a dialogue type omit Ai in sel and the body of
operations associated with Ri,new, whenever it appears in sel or the body of an operation
associated with Ri.

Rule 34. In case Rule 10 is applied to a dialogue type omit A in sel and the body of
operations associated with Rnew, whenever it appears in sel or the body of an operation
associated with R.

Note that the last two extension rules have no effect on Rnew or Ri,new, as the extension
of the selection attribute or the body of an operation has to be defined for these new types.

Rule 35. In case Rule 11 is applied to a dialogue type replace rn by r1,new in sel and the
body of operations associated with Rnew.

Rule 36. In case Rule 12 is applied to a dialogue type omit A in sel and the body of
operations associated with Rn,new.

For the third group of rules, i.e. Rule 13-17 dealing with schema extension we cannot
define reasonable extension rules for dialogue types, as we always have to deal with com-
pletely new types. The same applies to Rule 18-20, i.e. the group of rules dealing with
type integration.

Finally, for the group of rules dealing with integrity constraints only Rules 22, 24 and
25 give rise to the following three extension rules for dialogue types.

Rule 37. In case Rule 22 is applied to a dialogue type replace r2 by rnew in sel and the
body of operations, whenever it appears.

Rule 38. In case Rule 24 is applied to a dialogue type replace r2 by r2,new in sel and the
body of operations, whenever it appears.

Rule 39. In case Rule 25 is applied to a dialogue type remove A in sel and the body of
operations, whenever it appears.

122

Chapter 7

Case Studies

In this chapter, we present four case studies in data warehouse and OLAP systems de-
velopment. First, we show how a data warehouse is built incrementally from data marts.
The second case deals with dynamic data warehouse design with focus on performance
issues. In the third case we address the issue of distribution design, for which we propose
to analyse and optimise query and maintenance costs. Finally we look at a case with
specific application in OLAP for supporting management decision making, namely the
linear regression and time series analysis. Our purpose for the case studies is to show how
we deal with the common issues in data warehouse and OLAP systems design using the
refinement-based design method.

7.1 Adding a New Data Mart

As we discussed in the early chapters, our method allows to build a data warehouse from
data marts while preserving system integrity. This is achieved by applying the schema
integration technique introduced in Chapter 6. In the following, we show step by step how
a new data mart is added to the existing system, using our refinement-based design method
following the integration process and by applying the schema transformation rules. This
design step is classified under the requirement capturing phase of our refinement-based
design method.

The data warehouse design process is complex due to its involvement with many busi-
ness process areas, each of which are with many design concerns, such as schemata,
functionalities and performance, etc. However, our discussion of adding a new data mart
in the following will not show how to build an optimal data mart, but focus on the issue
of data integrity by schema integration.

7.1.1 Example: CRM for Grocery Store

We take CRM (Customer Relationship Management) as an example data mart to add into
our grocery store data warehouse, in particular, using the ground model in TASM given
in Section 5.1.5. Designing data warehouses for CRM is discussed in many publications,
e.g. [25, 110, 58]. As shown in [25], it is complex to design the schema for CRM. In
their case study they obtained a complicated data warehouse schemata with 3 facts and
19 dimensions in a starter model. However, the principle of our ASM-based method is to
simplify it by abstraction and stepwise refinements. For example, the basic requirements,
which are modelled by a set of analysis types in [25], are basically a set of new OLAP
views, namely a set of user reports/queries. Furthermore, our experience shows that

123

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

Purchase

cid

first-name

discountsales
name

Customer

address

Time
date

monthquarter

year

Shop

address

phonesid

Productdescription category

pid

dayweek

last-name

Figure 7.1: The data warehouse schema for CRM

the requirements from users usually come in form of reports or queries. Therefore, as
more reports/queries can be added in a similar fashion later on, we may take a report
on customer purchase by customer (customer id, last name, first name), shop, product,
month, quarter and year with details, such as total sales and total discount, to support
customer profitability analysis as a start. Based on this requirement, we derive a data
schema as shown in Figure 7.1. This will then be integrated with the data warehouse
schema from Chapter 5.

7.1.2 Incorporate CRM

We use the refinement-based method introduced in Chapter 5 to incorporate the new
OLAP view into the existing ground model, which is constructed in section 5.1, by ap-
plying the following steps:

1. Add a new rule to the OLAP ASM: we add a new rule for customer purchase report.
This rule will be exported for DW ASM to use.

create V customer purchase = forall c, ln, fn, s, p, m, q, y with

∃n, a, ph.(s, n, a, ph) ∈ Shop CRM∧
∃de, ca.(p, de, ca) ∈ Product∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time∧
∃a′.(c, ln, fn, a′) ∈ Customer DW
do let S = src[0, πs′ , +]

({(c, s, p, d, s′) | ∃dic.
(i, s, p, d, s′, dic) ∈ Purchase CRM ∧
d.month = m ∧ d.year = y})

D = src[0, πdic, +]
({(i, s, p, d, dic) | ∃s′.
(i, s, p, d, s′, dic) ∈ Purchase CRM ∧
d.month = m ∧ d.year = y})

in V customer purchase(c, ln, fn, s, p,m, q, y, S, D) := 1
enddo

2. Add a new controlled function to the OLAP ASM: apply the schema transformation

124

7.1. ADDING A NEW DATA MART Jane Qiong Zhao

rule 13, to add the OLAP view V customer purchase and the corresponding data
mart view DM V customer purchase. These two functions will be exported and
imported for DW ASM to use.

OLAP-ASM∗ B V customer purchase
= cid× last name× first name× shop× product
×month× qtr × year × sales× discount → {1l}

OLAP-ASM∗ B DM-V customer purchase
= dm× cid× last name× first name× shop× product
×month× qtr × year × sales× discount → {1l}

3. Add new controlled function(s) to the DW ASM: apply the schema transformation
rule 13, to add the following functions to DW ASM, as the current data model does
not support them. We will export the schema Customer DW, and import it in DB
ASM. Note that time and product do not need to be added since they are identical
to the existing relations.

DW-ASM∗ B Address =t address : town× region× state

DW-ASM∗ B Customer DW
= cid× last name× first name× Address → {1l}

DW-ASM∗ B shop CRM
= sid× name× Address× phone → {1l}

DW-ASM∗ B Purchase CRM
= cid× sid× pis× date× sales× discount → {1l}

4. Integrate controlled functions on the DW ASM: as we have added two new functions
in step 3, we carry out the integration process, i.e. the 6-step process, as described
in Section 6.4.

(a) Homogenisation of the schemata: in this step, we apply Rule 1 to break the
address of the shop into town, region and state as follows:

DW-ASM B Shop CRM = sid× name× Address× phone → {1l}
DW-ASM∗ B Shop CRMnew = sid× name× town

×region× state× phone → {1l}

(b) Adding inter-schema integrity constraints: not required for our example.

(c) Modulisation: not required in our example.

125

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

(d) Type integration: in this step, we apply Rule 18 to integrate Shop with
Shop CRMnew, Purchase with Purchase CRM, as follows:

DW-ASM B Shop =
sid× name× town× region× state× phone → {1l}
Shop CRMnew =
sid× name× town× region× state× phone → {1l}

DW-ASM∗ B Shopnew =
sid× name× town× region× state× phone → {1l}

ϕ

which is a special case of type integration for two identical schemas, and

DW-ASM B Purchase =
sid× cid× pid× date×
qty × sales× profit → {1l}
Purchase CRM =
sid× cid× pid× date×
sales× discount → {1l}

DW-ASM∗ B Purchasenew =
sid× cid× pid× date×
qty × sales× profit× discount → {1l}

ϕ

The side condition ϕ:

K1 = K2 ∧R1[K1 ∪X] = h(R2[K2 ∪ Y]),

is satisfied, with the keys in both schemas being sid × cid × pid × date, and h
the identity function.

(e) Path integration: not required in our example.

(f) Other integrity constraints: not required in our example.

Instead of exporting and importing the schemata with the new names, we can rename
the schemata Shopnew back to Shop and Purchasenew back to Purchase, so we avoid
the changes in export and import. The new schema after the integration is shown
as Figure 7.2.

5. Add controlled functions to the DB ASM: we combine this step with the schema
integration to extend the schema Buys to track the discount. This can be done by
applying Rule 14 as follows:

DB-ASM B Buys = time× cid× sid× pid× quantity → {1l}
DB-ASM∗ B Buysnew = time× cid× sid× pid× quantity × discount → {1l}

Again we will rename Buysnew back to Buys to avoid unnecessary changes. The new
schema for the operational DB is shown in Figure 7.3.

126

7.1. ADDING A NEW DATA MART Jane Qiong Zhao

Purchase

cid

first-name

discountsales
name

Customer

address

Time
date

monthquarter

year

Shop

town

region
phone

state

sid

Productdescription category

pid

dayweek

last-name
quantity profit

Figure 7.2: The data warehouse schema after incorporating CRM

Part Offer Store

Buys Customer

pricedate

cost

kind description sid address

cid name

address

timequantity

discount

Figure 7.3: The operational DB schema after incorporating CRM

127

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

6. Change the rules on DW ASM: in this step we propagate changes into the impacted
rules, e.g. extract purchase, a new rule for Customer DW, and open datamart(dm)
as follows:

extract purchase = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c, d) ∈ πcid,pid,sid,time,price,cost,discount

(Buys ./ Customer DB ./ Part ./ Store ./ Offer) ∧ t.date = d
do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys ∧ t.date = d})

D = src[0, πd, +]({(t, d) | (i, s, p, t, d) ∈ Buys∧
t.date = d}) S = Q ∗ p′ −D P = Q ∗ (p′ − c)−D

in Purchase(i, p, s, d, Q, S, P, D) := 1 enddo

extract customer = forall i, n, d, a with

(i, n, d, a) ∈ Customer DB
do Customer DW(i, n.first, n.last, a) := 1 enddo

open datamart(dm) = case the-matching-view(dm) of
V sales : create V sales ;

forall s, r, st, m, q, y, S with

(s, r, st,m, q, y, S) ∈ V sales do
DM-V sales(dm, s, r, st,m, q, y, S) := 1 enddo

V customer purchase : create V customer purchase;
forall c, ln, fn, s, p, m, q, y, S, D with

(c, ln, fn, s, p, m, q, y, S, D) ∈ V customer purchase do

DM-V customer purchase(dm, c, ln, fn, s, p, m, q, y, S,D) := 1 enddo

endcase

close datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S with

(the-datamart(op), s, r, st, m, q, y, S) ∈ DM-V sales do
DM-V sales(the-datamart(op), s, r, st, m, q, y, S) := ⊥ enddo

enddo endcase

We export the rule extract customer and import it in DB ASM.

7. Change the rules on DB ASM: we change the main rule to include data extraction
for Customer DW as follows:

main = if r-type(req) = extract then

extract purchase || extract shop || extract product
extract time || extract customer

endif

8. Change the functions/rules on OLAP ASM: due to the newly added OLAP view and
the renaming of schemata, the rules close datamart and create V customer purchase
will be changed as follows:

close datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S with

(the-datamart(op), s, r, st, m, q, y, S) ∈ DM-V sales do

128

7.1. ADDING A NEW DATA MART Jane Qiong Zhao

DM-V sales(the-datamart(op), s, r, st, m, q, y, S) := ⊥ enddo

V customer purchase : forall c, ln, fn, s, p, m, q, y, S, D with

(the-datamart(op), c, ln, fn, s, p,m, q, y, S,D) ∈ DM-V customer purchase do

DM-V customer purchase(the-datamart(op), c, ln, fn, s, p, m, q, y, S,D) := ⊥
enddo endcase

create V customer purchase = forall c, ln, fn, s, p, m, q, y with

∃n, t, r, st, ph.Shop(s, n, t, r, st, ph) = 1∧
∃de, ca.(p, de, ca) ∈ Product∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time∧
∃a′.(c, ln, fn, a′) ∈ Customer DW
do let S = src[0, πs′ , +]

({(c, s, p, d, s′) | ∃q′, p′, dic.
(i, s, p, d, q′, s′, p′, dic) ∈ Purchase ∧
d.month = m ∧ d.year = y})

D = src[0, πdic, +]
({(i, s, p, d, dic) | ∃q′, p′, s′.
(i, s, p, d, q′, s′, p′, dic) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V customer purchase(c, ln, fn, s, p,m, q, y, S, D) := 1
enddo

The three refined ASM models after the CRM is incorporated are given as follows:

TASM DB-ASM
IMPORT

DW-ASM(Shop, Product, Time, Purchase, Customer DW,
extract purchase, extract shop,
extract product, extract time, extract customer)

EXPORT

Store, Part, Buys, Offer
SIGNATURE

Store:sid× name× size× address → {1l },
Part:pid× kind× description → {1l },
Customer DB:cid× name× dob× address → {1l },
Buys:time× cid× sid× pid× quantity × discount → {1l },
Offer:pid× sid× date× price× cost → {1l },
r-type (external), req (external)

BODY

main = if r-type(req) = extract then

extract purchase || extract shop
extract product || extract time || extract customer

endif

TASM DW-ASM
IMPORT

DB-ASM(Store, Part, Customer DB, Buys, Offer)),

129

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

OLAP-ASM(V sales, DM-V sales, V customer purchase,
DM-V customer purchase, the-datamart, the-matching-view,
create V sales, create V customer purchase)

EXPORT

Shop, Product, Time, Purchase, Customer DW
extract purchase, extract shop,
extract product, extract time, extract customer

SIGNATURE

Shop:sid× name× town× region× state× phone → {1l },
Product:pid× category × description → {1l },
Time:date× day × week ×month× quarter × year → {1l },
Customer DW: cid× last name× first name× address → {1l}
Purchase:cid× sid× pid× date× qty × sales× profit → {1l },
r-type (external), req (external)

BODY

main =if r-type(req)=open-datamart then

open datamart(the-datamart(req)) endif

extract purchase = forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c, d) ∈ πcid,pid,sid,time,price,cost,discount

(Buys ./ Customer DB ./ Part ./ Store ./ Offer) ∧ t.date = d
do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys ∧ t.date = d})

D = src[0, πd, +]({(t, d) | (i, s, p, t, d) ∈ Buys∧
t.date = d}) S = Q ∗ p′ −D P = Q ∗ (p′ − c)−D

in Purchase(i, p, s, d, Q, S, P, D) := 1 enddo

extract shop = forall s, n, a with

∃s′.(s, n, s′, a) ∈ Store
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, t, r, st, ph) := 1 enddo

extract product = forall p, k, d with

(p, k, d) ∈ Part
do let p′ = p, c = k, d′ = d

in Product(p′, c, d′) := 1 enddo

extract time = forall t with
∃ c, p, s, q.(c, p, s, q, t) ∈ Buys
do if Time(t.date, t.day, t.week, t.quarter, t.month, t.year) = ⊥

then Time(t.date, t.day, t.week, t.quarter, t.month, t.year) := 1
enddo

extract customer = forall i, n, d, a with

(i, n, d, a) ∈ Customer DB
do let i′ = i fn = n.first ln = n.last a′ = a

in Customer DW(i′, fn, ln, a′) := 1 enddo

130

7.1. ADDING A NEW DATA MART Jane Qiong Zhao

open datamart(dm) = case the-matching-view(dm) of
V sales : create V sales ;

forall s, r, st, m, q, y, S with

(s, r, st,m, q, y, S) ∈ V sales do
DM-V sales(dm, s, r, st,m, q, y, S) := 1 enddo

V customer purchase : create V customer purchase;
forall c, ln, fn, s, p, m, q, y, S, D with

(c, ln, fn, s, p, m, q, y, S, D) ∈ V customer purchase do

DM-V customer purchase(dm, c, ln, fn, s, p, m, q, y, S,D) := 1 enddo
endcase

TASM OLAP-ASM
IMPORT DW-ASM(Shop, Product, Time, Purchase)
EXPORT V sales, DM-V sales, create V sales,

V customer purchase, DM-V customer purchase, create V customer purchase,
the-datamart, the-matching-view

SIGNATURE

V sales:sid× region× state×month× quarter × year×
sales× profit → {1l },

DM-V sales:dm× sid× region× state×month× quarter×
year × sales → {1l } ,

V customer purchase:cid× last name× first name× shop× product
×month× qtr × year × sales× discount → {1l}

DM-V customer purchase:dm×cid×last name×first name×shop×product
×month× qtr × year × sales× discount → {1l}

o-type: op → {open, close, quit},
owner: datamart → user,
issuer: op → user,
the-datamart: op → datamart,
the-view: op → view,
the-matching-view: datamart → view,
op: operation (external)

BODY

main = if o-type(op) = login then LOGIN
elsif if registered(issuer(op))=1 then

if o-type(op) = open then OPEN
elsif o-type(op) = close then CLOSE
elsif o-type(op) = quit then QUIT

endif

LOGIN =
registered(issuer(op)):=1

OPEN =
import dm

datamart(dm) := 1
owner(dm) := issuer(op)
the-matching-view(dm) := the-view(op)

131

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

import reqst
let reqst = (open-datamart,dm) in
request(reqst) := 1

end-import;
end-import;

CLOSE =
close datamart(the-datamart(op));
owner(the-datamart(op)) := ⊥
datamart(the-datamart(op)) := ⊥

QUIT =
let usr = issuer(op) in

forall dm with owner(dm) = usr
do close datamart(dm)

datamart(dm) := ⊥ owner(dm) := ⊥ enddo

registered(usr) := ⊥

close datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S with

(the-datamart(op), s, r, st, m, q, y, S) ∈ DM-V sales do
DM-V sales(the-datamart(op), s, r, st, m, q, y, S) := ⊥ enddo

V customer purchase : forall c, ln, fn, s, p, m, q, y, S, D with

(the-datamart(op), c, ln, fn, s, p,m, q, y, S,D) ∈
DM-V customer purchase do

DM-V customer purchase(the-datamart(op),
c, ln, fn, s, p, m, q, y, S,D) := ⊥

enddo endcase

create V sales = forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop ∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales(s, r, st, m, q, y, S) := 1
enddo

create V customer purchase = forall c, ln, fn, s, p, m, q, y with

∃n, t, r, st, ph.Shop(s, n, t, r, st, ph) = 1∧
∃de, ca.(p, de, ca) ∈ Product∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time∧
∃a′.(c, ln, fn, a′) ∈ Customer DW
do let S = src[0, πs′ , +]

({(c, s, p, d, s′) | ∃q′, p′, dic.
(i, s, p, d, q′, s′, p′, dic) ∈ Purchase ∧

132

7.2. DYNAMIC DATA WAREHOUSE DESIGN Jane Qiong Zhao

d.month = m ∧ d.year = y})
D = src[0, πdic, +]

({(i, s, p, d, dic) | ∃q′, p′, s′.
(i, s, p, d, q′, s′, p′, dic) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V customer purchase(c, ln, fn, s, p,m, q, y, S, D) := 1
enddo

7.2 Dynamic Data Warehouse Design

As the requirements in business analysis change over time, data warehouse design becomes
an ongoing task. Theodoratos et al approach this issue as dynamic data warehouse design
in [109, 108]. They aim at preserving the set of existing materialised views and extending
it when needed in rewriting the new OLAP queries. The drawback of their approach is
that it may compromise the optimal query performance and view maintenance due to the
constraint. In our work, we suggest materialising a new view under a space constraint
if it is beneficial for computing other OLAP queries, even if it can be computed from
the materialised views, and for the benefit of view maintenance to apply view integration
techniques when a new view is added.

In the following, we present first the cost model for query evaluation and view mainte-
nance and the benefit models for determining view selection, and then the view selection
process. Finally we present some cases for view selection and dynamic data warehouse
design.

7.2.1 Cost and benefit Model

For simplicity, we adopt the basic idea from [48] in estimation of the query evaluation
cost and view maintenance cost. That is, we use the size of a view v as its maintenance
cost and the query evaluation cost of a query q, if q is computed totally from v:

qcost(q, v) = s(v)

Similarly, we have the view maintenance cost:

mcost(v) = s(v)

Further we introduce a notion of benefit for comparing two materialised views v1 over
v2 in computing query q of frequency f as:

b(v1, v2) = (s(v2)− s(v1))× (f + 1)

where both the query cost and the view maintenance cost are considered. If b is
positive, it means materialising v1 is more beneficial.

In the case that one of the views is already materialised, thus maintaining it does
not involve additional cost, the benefit of using existing materialized view v1 to compute
query q over creating a new view v for query q is:

bx(v1) = (s(v)− s(v1))× f + s(v)

For deciding if materialising a new view v is more favorable for another OLAP view
o, the benefit is estimated:

133

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

bz(o) = ((s(v(o))− s(v))× f(o)

where v(o) is a materialised view which is used for computing o. If the sum over all
positive bz(o) is greater than s(v), we consider it is beneficial to materialise v and therefore
we rewrite the corresponding queries using v.

The above estimation is rather simple. However, a more comprehensive estimation can
be applied easily. For more involved models see e.g. [109, 41]. As how to best estimate
the costs is not our focus, we adopt this simplistic but still reasonable approach.

7.2.2 View Selection Process

The basic idea of our view selection is that under the given constraint, S, the space
constraint, we always materialise a new view if it cannot be computed from the existing
materialised views, or it is more beneficial for computing other OLAP queries. Although
we should be more concerned with the time for refreshing the materialised views than the
storage space, our justification is that the larger the total size of the views, the longer it
will take to maintain. Our selection process is invoked whenever there is a new OLAP
view added, we invoke the selection process to check if the set of existing materialised
views can be used to compute the OLAP view. In order to do so, we define a notion
of fineness to compare two views, such that we can compute the less fine one from the
finer one. We agree with [61] that there is not much to gain by computing a view using
multiple views when we are considering typical OLAP queries involving aggregations.

Definition 7.1. A view(query) v1 is called to be finer than v2, denoted as v1 Â v2, if v2

is computable from v1 by aggregating operations.

Example 7.1. If v1 is the view of sales by day, and v2 is the view of sales by month, then
v1 is finer than v2, since we can get the monthly sales by summing up the daily sales for
the month.

Our view selection algorithm is used for determining if a new view v is to be material-
ized for a query q, or if an existing materialized view m′ should be used. We proceed with
finding the best candidate m′ from the materialised view set mv based on the calculation
of bmax. If not found, v will be materialised if it meets the constraint S. Otherwise,
we move on with calculating the benefit bsum if materialising v will be more beneficial ,
bsum > s(v), for there may be OLAP views which can be computed using v. If bsum > s(v),
we materialise v and indicate the best candidate from mv by m′, that means, we will still
compute v from m′ in view maintenance along with the data warehouse.

Let us define the functions, mv, the materialised views; ov, the OLAP views; v, the
view of query q with vinov; f , the frequency of OLAP view o; s, the size of view; and
the-view:ov → mv. Assume the space constraint S, and current usage of the space S ′, we
define our view selection rule as follows:

select(mv, ov, v(q), f(v),m′) =
bmax := 0, bsum := 0
forall m ∈ mv do

if m Â v(q) then do

b(m) := (s(v(q))− s(m))× f(v) + s(v(q));
if b(m) > bmax then

bmax = b(m),m′ := m enddo

134

7.2. DYNAMIC DATA WAREHOUSE DESIGN Jane Qiong Zhao

enddo

if bmax = 0 ∧ S ′ + s(v(q)) ≤ S then mv := mv ∪ v(q)
else forall o ∈ ov do

if v(q) Â o then do

b(o) := (s(the-view(o))− s(v))× f(o)
bsum := bsum + b(o) enddo

enddo

if bsum > s(v) ∧ S ′ + s(v(q)) ≤ S then mv := mv ∪ v(q)

7.2.3 Application Cases

Example 7.2. Let us look at a case for view selection. Assume that our current data
warehouse has two OLAP views:

View V1: the total sale by shop and day, its average number of tuples: s(V1) = 20000,
its frequency f(V1) = 30;

View V2: the total sale by state and month, its average number of tuples: s(V2) = 3000,
its frequency f(V2) = 10;

Assuming V1 is materialized, V2 is rewritten from V1 and not materialised, and space
is not a concern in this case.

Now the user requests for a new OLAP query, view V , the total sale by region and
day, its average number of tuples: s(V) = 18000, its frequency f(V) = 5.

It is obvious that V1 Â V holds, that means, we can rewrite the new view from V1.
Our estimation of the benefit of rewriting V from V1:

b(V1) = (s(V)− s(V1))× f(V) + s(V)

= (18000− 20000)× 5 + 18000

= 8000

As we have bmax = b(V1) positive, we should rewrite V from V1. However, we shall
also consider if materialising V will be more beneficial for other OLAP views which are
rewritten from V1.

It is obvious that we have V Â V2, so the benefit of writing V2 from V is estimated:

b(V2) =(s(V1)− s(mathcalV))× f(mathcalV2)

= (20000− 18000)× 10

= 20000

Now we have bsum = b(o) and bsum > s(V), that means, we should materialise the new
view V and rewrite V2 from V .

135

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

Example 7.3. Let us look at a case of dynamic data warehouse design. Assume the money
figures in the ground model are in US$, and we have an OLAP query on total sales in
US$ with no figures on profit. A new OLAP query is requested from the store manager
for total sales in EURO and the corresponding profit.

It is obvious that we are not able to rewrite the new view from the existing total sales
with profit missing, so we extend the materialsied view set with the view for the new
query. Let us define a function cnv for converting from EURO to US$. We execute the
refinement steps as follows:

1. Add a new rule to the OLAP ASM:

create V sales euro = forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

P = src[0, πp′ , +]
({(i, s, p, d, p′) | ∃q′, s′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales euro(s, r, st, m, q, y, cnv−1(S), cnv−1(P)) := 1
enddo

2. Add a new controlled function to the OLAP ASM: apply the schema transformation
rule 13, to add the OLAP view
V Msales euro to the OLAP-ASM:

OLAP-ASM∗ B V sales euro
= shop×region×st×month×qtr×year×profit×msale euro → {1l}

3. Invoke view selection. As we have indicated we need to materialise the new view,
and assume space is not a concern in this case, we proceed with adding the new view
to the materialised view set in the next step.

4. Apply the schema transformation rule 13 to add the new OLAP view to the DW-
ASM as a materialised view:

DW-ASM∗ B MV V sales euro
= shop×region×st×month×qtr×year×profit×msale euro → {1l}

5. Integrate controlled functions on the DW ASM: apply type integration rule 18 to
the materialised views as follows:

136

7.2. DYNAMIC DATA WAREHOUSE DESIGN Jane Qiong Zhao

DW-ASM B MV V sales euro =
shop× region× st×month×
qtr × year ×msale euro× profit → {1l}
MV V sales =
shop× region× st×month×
qtr × year ×msale → {1l}

DW-ASM∗ B MV V sales prf =
shop× region× st×month×
qtr × year × profit×msale → {1l}

ϕ

Then the side condition ϕ is satisfied by:

• both of the types have the same key: sh×month× year;

• and they map to the same tuples populated from the same data warehouse
instance with no additional selections;

• and the bijective mapping is defined as h := (id, id, id, id, cnv), where id is an
identity function, for mapping the keys, and other three identical attributes,
and cnv is the current currency conversion function from EURO to US$ for
mapping the total sales.

6. As a consequence of the integration, we need to replace the rule refresh MV V sales
at the DW-ASM by the following:

refresh MV V sales prf =
create MV V sales prf ;
forall s, r, st, m, q, y, S, P with

(s, r, st, m, q, y, S, P) ∈ V sales do
MV V sales prf(s, r, st, m, q, y, S, P) := 1 enddo

7. Similarly we replace the view creation rules create V sales and create V sales euro
at the OLAP-ASM by the followings:

create V sales prf =
forall s, r, st, m, q, y with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d, d′, w.(d, d′, w, m, q, y) ∈ Time
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

P = src[0, πp′ , +]
({(i, s, p, d, p′) | ∃q′, s′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧

137

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

d.month = m ∧ d.year = y})
in V sales(s, r, st, m, q, y, S, cnv−1(P)) := 1

enddo

8. Then we need to change the datamart opening rules accordingly in DW-ASM:

open datamart(dm) = case the-matching-view(dm) of
V sales : forall s, r, st,m, q, y, S, P with

(s, r, st, m, q, y, S, P) ∈ MV V sales prf do
DM-V sales(dm, s, r, st, m, q, y, S) := 1 enddo

V sales euro : forall s, r, st,m, q, y, S, P with

(s, r, st, m, q, y, S, P) ∈ MV V sales prf do
DM-V sales euro(dm, s, r, st,m, q, y, cnv−1(S), P) := 1

enddo

endcase

7.3 Distribution Design

It is commonly accepted that operational databases and OLTP tasks are supported by
distributed databases [81]. However, little work has been done on the distribution of
OLAP tasks. For instance, it is quite possible that regional analysis of sales, profits,
customer preferences, etc. will be executed regionally. Even a central data warehouse
may receive its data only from local data warehouses. This reflects the distributed nature
of modern organisations, the huge data volume processed for OLAP applications, and the
non-acceptability of failure.

Obviously, as data warehouses support only read access in order to provide the data
for the various data marts, a simple warehouse distribution could be obtained by full
replication of the complete data warehouse. However, this is not efficient, as then a local
data warehouse might contain a lot of data that is never used at that particular location.
On the other hand, isolating exactly the data that is needed in local data warehouses may
lead to an overly fragmented system.

Therefore, we propose to analyse and optimise query and maintenance costs. For this
purpose we provide a simple query cost model, on the basis of which it is possible to recon-
sider a given fragmentation. The simple heuristic is that fragments may be re-combined, if
this is advantageous from a performance point of view. A distribution grocery store data
warehouse is given as an example in demonstration of design using the refinement-based
design approach.

7.3.1 Architecture of Distributed Data Warehouses

As refreshing of the data warehouse content can be assumed to be executed in an off-line
mode and the OLAP tier requires only read-access to the warehouse, we favour an architec-
ture with as much replication as necessary, such that all view creation operations for data
marts can be performed locally. This assumption is illustrated by the distributed data

138

7.3. DISTRIBUTION DESIGN Jane Qiong Zhao

Data Mart 1 Data Mart n

Database 1 Database k

Data Warehouse 1 Data Warehouse m

Figure 7.4: Distributed Data Warehouse Architecture

warehouse architecture in Figure 7.4. It is even possible that the whole data warehouse
is replicated at all nodes.

For instance, in the sales example we used so far regional sales statistics may only be
provided to regional branch offices, whereas a general sales statistics for a headquarter
may disregard individual shops. This implies that different data marts would be needed
for the locations participating in the distributed warehouse and OLAP system.

7.3.2 Fragmentation

The standard approach to distribution design for databases is to fragment the logical
units, i.e. the relations in case of a relational database [81]. In fact, the way we modelled
the data warehouse in Chapter 5 has a relational database schema at its core. We can
therefore describe horizontal and vertical fragmentation as refinements of ASMs.

We may start with a fully replicated data warehouse, i.e. for each location ` we have
a copy of DW-ASM as well as a tailored copy of OLAP-ASM, which only supports those
data marts that are used at `. Fragmenting the signature of DW-ASM impacts on the
extraction rules defined on DW-ASM and the view creation rules on the copies of OLAP-
ASM, whereas the local versions of DB-ASM remain unchanged. Therefore, without loss of
generality we may concentrate on a single machine DW-ASM as the object of refinement.

As shown in Chapter 5, the signature of DW-ASM consists of a set of controlled
functions Si (i = 1, . . . , k), each with an arity ari. Horizontal fragmentation of Si with a
selection formula ϕ leads to two new functions Si1 and Si2 with the same arity ari together
with the constraints

Si1(x1, . . . , xari
) 6= ⊥ ⇔ Si(x1, . . . , xari

) 6= ⊥ ∧ ϕ(x1, . . . , xari
)

and

Si2(x1, . . . , xari
) 6= ⊥ ⇔ Si(x1, . . . , xari

) 6= ⊥ ∧ ¬ϕ(x1, . . . , xari
).

In other words, the relation represented by Si is the disjoint union of the relations
represented by Si1 and Si2. In DW-ASM we obtain the following additional rule:

139

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

extract Si1(x) =
extract Si(y) ;
forall x1, . . . , xari

with y(x1, . . . , xari
) = 1∧ ϕ(x1, . . . , xari

) = 1
do x(x1, . . . , xari

) := 1
enddo

Similarly we obtain a rule extract Si2(x). If fragment Sij is used in DW-ASM, then
this is reflected in an obvious change for refreshing.

Vertical fragmentation of Si leads to n new functions Si1, . . . , Sin of arities arij < ari

and subject to the constraints

Si1(x1, . . . , xarij
) 6= ⊥ ⇔ ∃y1, . . . , yari

.Si(y1, . . . , yari
) ∧

∧
1≤p≤arij

xp = yσj(p)

for some injective σj : {1, . . . , arij} → {1, . . . , ari} (j = 1, . . . , n). In addition, we
must have

⋃n
j=1{σj(1), . . . , σj(arij)} = {1, . . . , ari}, and the places σj (1) , . . . , σj(arij)

must define a key for Si. Thus, in DW-ASM we obtain the following additional rules:

extract Sij(x) =
extract Si(y) ;
forall x1, . . . , xari

with y(x1, . . . , xari
) = 1

do x(xσj(1), . . . , xσj(arij)) := 1
enddo

7.3.3 Query and Maintenance Cost

Fragmentation implies changes to the view creation rules in OLAP-ASM. In fact, these
rules define the queries we are interested in. In developing a query cost model as in
[73] we may assume that the queries are rewritten in a way that we first use a selection
predicate ϕ to select tuples in a data warehouse relation Si, then project them to some of
the attributes. That is, each query involves subqueries of this form, which can be written
as rules in OLAP-ASM in the following way

subquery(x) =
forall x1, . . . , xari

with Si(x1, . . . , xari
) = 1 ∧ ϕ(x1, . . . , xari

) = 1
do x(xσ(1), . . . , xσ(q)) := 1
enddo

for some Si of arity ari in the signature of DW-ASM and an injective σ : {1, . . . , q} →
{1, . . . , ari}. The result of such a subquery corresponds to a fragment, first using horizon-
tal fragmentation with ϕ, then vertical fragmentation with σ. It is a common heuristic to
consider that some of these fragments may need to be re-combined to reduce the cost of
maintenance. The costs of a query q can be composed as c1(q) + d ·∑f∈F(q) s(f), where

the sum ranges over the set F(q) of fragments f used in q, d is a constant, s(f) is the size
of fragment f , and c1(q) is independent of the fragmentation [74].

140

7.3. DISTRIBUTION DESIGN Jane Qiong Zhao

Thus, only
∑

f∈F(q) s(f) is influencing in the query costs of q in the fragmentation
case. The query cost for the whole set of the queries at a site can be estimated by

qcosts =
∑

q

fq ·
∑

f∈F(q)

s(f)

=
∑

f

(∑
q

nf,q · fq

)
· s(f)

=
∑

f

c(f) · s(f) ,

where the first sum ranges over all queries, fq denotes the frequency of query q, and
nf,q denotes, the number of times the fragment f is used in computing the query q.

On the other hand, the maintenance costs correspond directly to the fragments built,
i.e. we have

mcosts = d′ ·
∑

f

s(f)

with the sum ranging over all fragments used in the local version of DW-ASM and a
constant d′. In combining query and maintenance costs we use a weighting factor, so the
total costs can be rewritten in the form

∑

f

(c(f) + w) · s(f)

with a constant w.

7.3.4 Recombination of Fragments

Of course, producing all fragments that are suggested by the queries produce minimal
query costs. However, as fragments may overlap, the more fragments we use the higher
the maintenance costs will be. Therefore, we should also consider the re-combination
of fragments into a single fragment for some of the fragments. Suppose Si1 and Si2 are
fragments derived from the function Si using selection formulae ϕ and ψ and projections
defined by σ and τ , respectively. We may assume without loss of generality that we can
write σ(j) = ij and τ(j) = ix+j. Then the combined fragment Si1] Si2 can be obtained
from Si by using selection with ϕ∨ψ followed by projection using σ + τ , which is defined
by

(σ + τ)(j) =

{
σ(j) for j = 1, . . . , k

τ(j − x) else

assuming σ is defined on {1, . . . , k} and τ on {1, . . . , `}.
Alternatively, we may re-combine Si1 and Si2 by an outer-join, which would produce

a result different from Si1]Si2, in which irrelevant values are replaced by ⊥. This can be
produced by adding rules to DW-ASM of the form as below. Note that y1, . . . , yl refer to
attributes in Si1 \ Si2, k1, . . . , km refer to attributes in Si1 ∩ Si2, which we assume to form
a key for Si1 and Si2, and z1, . . . , zn refer to attributes in Si2 \ Si1.

extract Si1 ⊕ Si2(X) =
extract Si1(Y) ; extract Si2(Z) ;
forall k1, . . . , km with

141

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

∃y1, . . . , yl, z1, . . . , zn.(Y (y1, . . . , yl, k1, . . . , km) = 1 ∧
Z(k1, . . . , km, z1, . . . , zn) = 1) do

let y1, . . . , yl, z1, . . . , zn =
Iy1, . . . , yl, z1, . . . , zn.(Y (y1, . . . , yl, k1, . . . , km) = 1 ∧

Z(k1, . . . , km, z1, . . . , zn) = 1) in
X(y1, . . . , yl, k1, . . . , km, z1, . . . , zn) := 1 enddo

forall k1, . . . , km with
∃y1, . . . , yl.Y (y1, . . . , yl, k1, . . . , km) = 1 ∧
¬∃z1, . . . , zn.Z(k1, . . . , km, z1, . . . , zn) = 1 do

let y1, . . . , yl = Iy1, . . . , yl.Y (y1, . . . , yl, k1, . . . , km) = 1 in

X(y1, . . . , yl, k1, . . . , km,⊥, . . . ,⊥) := 1 enddo

forall k1, . . . , km with
¬∃y1, . . . , yl.Y (y1, . . . , yl, k1, . . . , km) = 1 ∧
∃z1, . . . , zn.Z(k1, . . . , km, z1, . . . , zn) = 1 do

let z1, . . . , zn = Iz1, . . . , zn.Z(k1, . . . , km, z1, . . . , zn) = 1 in

X(⊥, . . . ,⊥, k1, . . . , km, z1, . . . , zn) := 1 enddo

With respect to the total costs we have c(f1 ⊕ f2) = c(f1) + c(f2) in the worst case,
and max(c(f1),c(f2)) in the best case. Thus, we have to compare

costs = (c(f1) + w) · s(f1) + (c(f2) + w) · s(f2)

with

costsnew = (c(f1 ⊕ f2) + w) · s(f1 ⊕ f2)

If we have costs ≥ costsnew, it is advisable to re-combine the fragments f1 and f2,
otherwise prefer to use f1 and f2. Obviously, a fragment can be combined with more
than one other fragment, but it should appear in only one such combination. Thus, a
non-deterministic process which selects pairs of fragments, compares costs and eventually
combines them does not guarantee a global cost optimum.

7.3.5 Distribution design for a Grocery Store Data Warehouse

Distribution design is classified as implementation refinement in our ASM-based method.
For ease of reference, we repeat the refinement steps as follows:

1. Replicate the data warehouse and the OLAP ASMs: for each node in the network
assume the same copy of the data warehouse ASM and the OLAP ASM.

2. Remove controlled functions and rules in local OLAP ASMs: if the needed OLAP
functionality is different at different network nodes, then these rules will simply
reduce the corresponding OLAP ASM.

3. Fragment controlled functions in local data warehouse ASMs: this rule will reorganise
and reduce a local data warehouse ASM, if the corresponding OLAP ASM does
not need all of the replicated data warehouse. The refresh rules are then adapted
accordingly.

142

7.3. DISTRIBUTION DESIGN Jane Qiong Zhao

4. Recombine fragments in local data warehouse ASMs: this rule will reorganise a local
data warehouse ASM according to query cost considerations. The refresh rules are
then adapted accordingly.

Example 7.4. Assume in the case of grocery store we have three locations, A, B, and
C, each of them has a different analysis work such as: one looks after the daily sales of
electronic products, with category ranging from 1000 inclusive to 2000; one monitors the
daily quantity sold for products; and the other tracks the daily profit made by products
sold.

Following the refinement steps in our method, we proceed as follows:

1. First we replicate the data warehouse and OLAP model at each node, which is to
simply make three copies of the data warehouse models, and name them by sites.

2. Remove the unnecessary OLAP views and the rules, such that we have:

TASM OLAP-ASMa

. . .
SIGNATURE

V sales ele:sid× region× state×month× quarter × year×
sales× profit → {1l },

. . .
BODY

. . .
create V sales ele = forall s, r, st, d, m, y, p with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d′, w, q.(d, d′, w, m, q, y) ∈ Time∧
∃c, des.(p, c, des) ∈ Product ∧ 1000 ≤ c < 2000
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

P = src[0, πp′ , +]
({(i, s, p, d, p′) | ∃q′, s′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales ele(s, r, st,m, q, y, S, P) := 1
enddo

. . .

TASM OLAP-ASMb

. . .
SIGNATURE

V sales qty:sid× region× state× date×month× year × product
×quantity → {1l },

. . .
BODY

. . .
create V sales qty = forall s, r, st, d, m, y, p with

143

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d′, w, q.(d, d′, w, m, q, y) ∈ Time∧
∃c, des.(p, c, des) ∈ Product
do let Q = src[0, πq′ , +]

({(i, s, p, d, q′) | ∃s′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales qty(s, r, st, d, m, y, p, Q) := 1
enddo

TASM OLAP-ASMc

. . .
SIGNATURE

V sales prf:sid× region× state× date×month× year × product
×sales× profit → {1l },

. . .
BODY

. . .
create V sales prf = forall s, r, st, d, m, y, p with

∃n, t, ph.(s, n, t, r, st, ph) ∈ Shop∧
∃d′, w, q.(d, d′, w, m, q, y) ∈ Time∧
∃c, des.(p, c, des) ∈ Product
do let S = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

P = src[0, πp′ , +]
({(i, s, p, d, p′) | ∃q′, s′.
(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.month = m ∧ d.year = y})

in V sales prf(s, r, st, d, m, y, p, S, P) := 1
enddo

3. Fragmentation in local data warehouse ASMs: it is obvious that tracking of elec-
tronic product sales requires a subset of the tuples in Purchase, for which horizontal
fragmentation can be used, and tracking the quantity sold by product and the sales
and profit by product sold require subsets of the columns in Purchase, which can
be realised by vertical fragmentation.

Let us start with the horizontal fragmentation. In our example we have predicates
ϕ: 1000 ≤ c′ < 2000 and ψ: c′ < 1000 ∨ c′ ≥ 2000. The horizontal fragmentation
by ϕ and ψ gives us two fragments f1 and f2. Our vertical fragmentation will be
carried out on f1 and f2 by two projections σ1, which eliminates sales and profit the
quantity, and σ2, which eliminates the quantity. These give us fragments f11, f12,
f21 and f22.

Based on the requirement, we have the fragments allocated as follows: f11 and f12 in

144

7.3. DISTRIBUTION DESIGN Jane Qiong Zhao

A, f11 and f21 in B, and f12 and f22 in C. Then we adapt the refresh rules accordingly:

TASM DW-ASMa

. . .
SIGNATURE

f11 : cid× sid× pid× time× qty → {1l },
f12 : cid× sid× pid× time× sales× profit → {1l },
tempf1 = cid× sid× pid× time× qty × sales× profit → {1l },
tempPurchase = cid× sid× pid× date× qty × sale× profit → {1l },

. . .
BODY

. . .
extract f11 = extract f1;
forall c, s, p, t, Q, S, P with (c, s, p, t, Q, S, P) ∈ f1

do f11(c, s, p, t, Q) := 1 enddo

extract f12 = extract f1;
forall c, s, p, t, Q, S, P with (c, s, p, t, Q, S, P) ∈ f1

do f12(c, s, p, t, S, P) := 1 enddo

extract f1 =
extract purchase;
forall c, s, p, t, Q, S, P with (c, s, p, t, Q, S, P) ∈ Purchase∧
∃c′, d.(p, c′, d) ∈ Product ∧ 1000 ≤ c′ < 2000

do tempf1(c, s, p, t, Q, S, P) := 1 enddo

extract purchase =
forall i, p, s, d, p′, c with

∃t.(i, p, s, t, p′, c) ∈ πcid,pid,sid,time,price,cost

(Buys ./ Customer DB ./ Part ./ Store ./ Offer) ∧ t.date = d
do let Q = src[0, πq, +]({(t, q) | (i, s, p, t, q) ∈ Buys∧

t.date = d}), S = Q ∗ p′, P = Q ∗ (p′ − c)
in tempPurchase(i, p, s, d,Q, S, P) := 1 enddo

TASM DW-ASMb

. . .
SIGNATURE

f11 : cid× sid× pid× time× qty → {1l },
f21 : cid× sid× pid× time× qty → {1l },
tempf1 = cid× sid× pid× time× qty × sales× profit → {1l },
tempf2 = cid× sid× pid× time× qty × sales× profit → {1l },
tempPurchase = cid× sid× pid× date× qty × sale× profit → {1l },

. . .
BODY

. . .
extract f11 =. . .
extract f21 = extract f2;
forall c, s, p, t, Q, S, P with (c, s, p, t, Q, S, P) ∈ f2

145

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

do f21(c, s, p, t, Q) := 1 enddo

extract f1 =. . .
extract f2 =
extract purchase;
forall c, s, p, t, Q, S, P with (c, s, p, t, Q, S, P) ∈ Purchase∧
∃c′, d.(p, c′, d) ∈ Product ∧ 1000 > c′ ∨ c′ ≥ 2000

do tempf2(c, s, p, t, Q, S, P) := 1 enddo

extract purchase=. . .

TASM DW-ASMc

. . .
SIGNATURE

f12 : cid× sid× pid× time× sales× profit → {1l },
f22 : cid× sid× pid× time× sales× profit → {1l },
tempf1 = cid× sid× pid× time× qty × sales× profit → {1l },
tempf2 = cid× sid× pid× time× qty × sales× profit → {1l },
tempPurchase = cid× sid× pid× date× qty × sale× profit → {1l },

; . . .
BODY

. . .
extract f12 =. . .
extract f22 = extract f2;
forall c, s, p, t, Q, S, P with (c, s, p, t, Q, S, P) ∈ f2

do f22(c, s, p, t, S, P) := 1 enddo

extract f1 =. . .
extract f2 =. . .
extract purchase=. . .

4. Recombine fragments in local data warehouse ASMs: as we have suggested, for a
better balanced query cost and redundancy, we should check if recombination of
fragments is beneficial. To proceed with recombination, let us assume the following:

• The average size of a tuple over Purchase as: (64× 3 + 32× 3) = 672(bits);

• The average number of tuples in Purchase as 400;

• The average size of a tuple over f11 is the same as over the other fragments, f12,
f21, and f22, as 640 bits;

• The average number of tuples in f11 is the same as in f12, as 100;

• The average number of tuples in f21 is also the same as in f22, as 300;

• The size of f11 and f12 as 64, 000, and f21 and f22 as 192, 000;

• The weighting factor w as 0.4;

• The frequency c(f11) and c(f12) in location A as 30;

• c(f11) and c(f21) in location B as 10;

• c(f12) and c(f22) in location C as 20.

So the total costs for not combining and recombining are estimated by:

146

7.3. DISTRIBUTION DESIGN Jane Qiong Zhao

In location A:

costs = (c(f11) + w) · s(f11) + (c(f12) + w) · s(f12)

= (30 + 0.4) · 64000 + (30 + 0.4) · 64000

= 3891200

costsnew = (c(f11 ⊕ f12) + w) · s(f11 ⊕ f12)

= (c(f11) + w) · s(f11 ⊕ f12)

= (30 + 0.4) · 67200

= 2042880

In location B,

costs = (c(f11) + w) · s(f11) + (c(f21) + w) · s(f21)

= (10 + 0.4) · 64000 + (10 + 0.4) · 192000

= 2662400

costsnew = (c(f11 ⊕ f21) + w) · s(f11 ⊕ f21)

= (c(f21) + w) · s(f11 ⊕ f21)

= (10 + 0.4) · 256000

= 2662400

In location C,

costs = (c(f12) + w) · s(f12) + (c(f22) + w) · s(f22)

= (20 + 0.4) · 64000 + (20 + 0.4) · 192000

= 5324800

costsnew = (c(f12 ⊕ f22) + w) · s(f12 ⊕ f22)

= (c(f12) + w) · s(f12 ⊕ f22)

= (20 + 0.4) · 256000

= 5324800

Based on the estimation shown above, it is more cost effective to recombine frag-
ments f11 and f12 at node A. The effect is to have f1 at A. The refresh rules should
again be adapted accordingly. As it is simple and straightforward, we omit the de-
tails.

147

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

7.4 Application of Business Statistics

The main undertaking of data warehousing is to support the business analysis happening
in the OLAP tier. Most of such analysis is data intensive, and involves applying business
statistics for supporting managers in their decision making. Often such requirements are
dynamic and arise with the change of economic and business conditions. In the following,
we take single linear regression, correlation and time series analysis as the examples in
the dynamic data warehouse design to demonstrate how these changes are incorporated
in the data warehouse process model using our tailored refinement method.

7.4.1 Single Linear Regression and Correlations

Regression analysis is used primarily for the purpose of prediction. The goal is to develop
a statistical model that can be used to predict the values of a dependent variable based
on the values of at least one independent variable. In contrast to regression, correlation
analysis is used to measure the strength of the association between numerical variables
[70].

Example 7.5. Let us take one of the examples in [70] for the case of grocery store data
warehousing. We aim at showing how the ground model is refined to support the regression
analysis. Our scenario is that the director of the grocery stores is being asked to develop
an approach for forecasting annual sales for all new stores. Suppose he decided to examine
the relationship between the size (square footage) of a store and its annual sales, that is,
to build a sample linear regression model equation as follows:

Ŷi = b0 + b1Xi

where

Ŷi = predicted value of Y for observation i

Xi = value of X for observation i

In our example, the X is the size of a store, and the Y is the annual sales.
In order to predict the value Y , we need to compute the two coefficients, b0 (the

sample Y intercept) and b1 (the sample slope). The simplest way is to use the least-
squares method, which requires a sample with details of store size and annual sales from
the data warehouse. Thus we need to make the required data, store size and annual sales
available for the sample selection.

Following the refinement process described in Chapter 5, we refine the ground model
for the requirement on data in the following:

1. Add a new rule in OLAP: we first define a rule populate V size sales for populating
the required data on store size and the annual sales.

populate size sales = forall s, size, y with

(s, size) ∈ Store∧
∃d, d′, w, q, m.(d, d′, w, m, q, y) ∈ Time∧
do letS = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.(i, s, p, d, q′, s′, p′) ∈ Purchase ∧

148

7.4. APPLICATION OF BUSINESS STATISTICS Jane Qiong Zhao

d.year = y})
in V size sales(s, size, y, S) := 1

enddo

2. Add a new controlled function to the OLAP ASM: apply the schema transformation
rule 13, to add function V size sales: (sid × size × year × sales) for supporting
the above OLAP rule.

3. Add a new controlled function to DW ASM: as the store size is not available in the
current data warehouse, we define a function Store(sid× size) in DW ASM.

4. Integrate controlled functions on the DW ASM: apply the schema transformation
rule 18, the two functions Shop and Store are integrated to Shop(sid × name ×
size× town× region× state× phone).

5. Change the view creation rules on the OLAP ASM: this is a consequence from view
integration.

populate size sales = forall s, size, y with

∃n, t, r, st, ph.(s, n, t, r, st, ph, size) ∈ Shop∧
∃d, d′, w, q, m.(d, d′, w, m, q, y) ∈ Time∧
do letS = src[0, πs′ , +]

({(i, s, p, d, s′) | ∃q′, p′.(i, s, p, d, q′, s′, p′) ∈ Purchase ∧
d.year = y})

in V size sales(s, size, y, S) := 1
enddo

6. Change the rules in the DW ASM: as one of the consequences of integration, the
refresh rule extract shop will be changed to extract the details of store size into the
relation Shop.

extract shop = forall s, n, s′, a with Store(s, n, s′, a) 6= ⊥
do let t = a.town, r = a.region, st = a.state, ph = a.phone

in Shop(s, n, s′, t, r, st, ph) := 1 enddo

7. Change the rules in the OLAP ASM: in addition, all the other rules that are referring
to Shop (which is changed in the integration), such as create V sales in the ground
model OLAP ASM, will be changed to include a function f as follows:

newRule = oldRule[Shop/f(Shop)]

where f is defined as

f(Shop) = {(s, n, t, r, st, ph) | ∃s′.(s, n, s′, t, r, st, ph) ∈ Shop}
Once the newly defined view View size sales is populated, it can be used as the

population for sample selection. With a sample, say last year’s sales as an example, we
may proceed with the regression and correlation analysis, which can be realised through
applying relevant formulas over the selected sample. We will not discuss it further due to
it involving only the application of statistical calculations.

149

Jane Qiong Zhao CHAPTER 7. CASE STUDIES

7.4.2 Time Series Analysis

Regression analysis provides a useful methodology for managerial decision making. Sim-
ilarly, the business forecasting methods applying the concept of time series analysis are
used in the process of managerial planning and control. Time series forecasting methods
involve the projection of future values of a variable based entirely on the past and present
observations of that variable. As an example, we may make prediction of next year annual
sales for a store based on its annual sales from year 1990 up to now.

Numerous methods applying time series analysis are devised for the purpose of fore-
casting. In the following we discuss how our data warehouse ground model is refined to
include the exponential smoothing technique as an additional OLAP function. Exponen-
tial smoothing is not just being used for smoothing (providing impression of long-term
movements) but also for obtaining short term (one period into the future) forecasts [70].

The formula for exponential smoothing is defined as follows:

Ei = WYi + (1−W)Ei−1

where

Ei = value being computed in time period i

Ei−1 = value being computed in time period i− 1

Yi = observed value of the time series in period i

W = subjectively assigned weight or smoothing coefficient(where0 < W < 1)

E1 = Y1

Example 7.6. In our grocery store example, let us consider the exponential smoothing
(e-smoothing in short), for forecasting store’s annual sales. First we refine the ground
model to include the data population for annual sales by store and year. This will be a
simple refinement as follows:

1. (Add a new rule in OLAP) we define a rule populate-annual-sales for populating
data on the annual sales by store and year.

populate-annual-sales = forall s, y with

∃n, t, r, st, ph.Shop(s, n, t, r, st, ph) = 1 ∧
∃d, d′, w, m, q.Time(d, d′, w, m, q, y) = 1
do let S = src[0, πs′ , +]({(i, s, p, d, s′) | ∃q′, p′.

Purchase(i, s, p, d, q′, s′, p′) = 1 ∧ d.year = y})
in V annual esales(s, y, S) := 1

enddo

2. Add a new controlled function to the OLAP ASM: apply the schema transformation
rule 13, to add function V annual esales (sid × year × sales) for supporting the
new rule.

It would be possible to just model the OLAP function e-smooth as the open-datamart
operation, for which we would need to change the open-datamart rule to incorporate the

150

7.4. APPLICATION OF BUSINESS STATISTICS Jane Qiong Zhao

computation of e-smoothed value. Another simpler way is to keep the open-datamart
unchanged and make the e-smooth function as a new operation. In the latter case, we
have the refinements under system implementation as follows:

1. First, we change the operation type function

o-type : op → {open, close, quit, e− smooth}
to include the new OLAP function e-smooth;

2. In order to process the new type e-smooth, we need to change the rule main by
adding:

elsif o-type(op)= e-smooth then E-SMOOTH

3. To support the new rule, we define two ASM functions the-weight: op → weight
for retrieving the weight from the operation, and Pre-evalue: sid × year→ evalue
for getting the previous year’s e-smoothed value.

4. Then we add a new rule for the OLAP function e-smooth:

E-SMOOTH = if the-view(op) = V annual sales then
import dm
datamart(dm) := 1, owner(dm) := issuer(op),
the-matching-view(dm) := the-view(op)

end-import;
populate-annual-sales ;
for all s, y, S with V annual sales(s, y, S) = 1 do

if pre-esales-value(s,y) 6= 0 then let

E = the-weight(op) ∗ S + (1− the-weight(op)) ∗ pre-esales-value(s, y)
in DM-V annual sales(dm, s, y, S, E) := 1

else let E = S in DM-V annual sales(dm, s, y, S, E) := 1 endif

enddo

151

Chapter 8

Conclusion

The Data warehouse and OLAP system design process is complex, lengthy, and error-
prone due to its wide coverage of the business processes of the enterprise, and its dynamic
nature of user requirements for the ever changing business conditions.

Current design methods mainly follow one of the two major approaches, i.e. the “top-
down” approach [53], which builds up the data warehouse first, and caters for the user
requirements in form of data marts later, and the “bottom-up” approach [58], which
focuses on the data marts only, leaving the data warehouse virtual. Projects using the
former approach can fail due to delaying “ROI” or lacking of fund, and projects using the
latter approach can fail due to data inconsistency.

In view of the issues of the design process and the problems in the current approaches,
we proposed a method that aims to resolving them within one unified framework. First
of all, we model the entire system by the three-tier architecture, consisting of the data
sources, the data warehouse and the OLAP system, while most methods focus on the data
warehouse design only. We model both the data and the operations using ASMs, while
most methods separate them by schema and process design. In order to have fast “ROI”,
we follow the “bottom-up” approach, but build the data warehouse at the same time. We
resolve the inconsistency issue through schema integration.

We dealt with the issues of the design process in a number of ways. First of all, we
applied the ASM-based method. The advantages of the ASM-based method are that
it allows us to model a system at a level close to the domain of the system with clear
operational semantics, so modelling work becomes simple for both the users and the
designers. The correctness checking of the first model, i.e. the ground model, can be
done by simply inspection. Formal verification is possible when the system properties are
formalised. The ground model is then subject to stepwise refinements, which not only
move the system from abstract to concrete, but also record precisely the intended design
decisions at each design step.

Secondly we provided a refinement-based design framework, which breaks down the
design process by design concerns, such as capturing new requirements, optimisation, and
implementation. This is done using specific refinement steps for some typical design con-
cerns in data warehouse and OLAP design, such as incremental data warehouse updates,
view materialisation for query performance, data distribution design, etc.

Finally we ease the designers’ work in the schema integration process by providing a
pragmatic schema integration process with a set of provably correct schema transformation
rules. This shifts the focus from formal refinement proofs to simple rule application.

Our idea of typed ASM is simpler than those in the literature. We aim to provide the
well developed terms in database technology for data warehouse modelling, in particular

152

Jane Qiong Zhao

schema integration.
Our future work includes exploring the possibility of using an execution tool to support

the model validation, by translating the TASM for a chosen tool. Furthermore we plan
to incorporate changes from the data sources, and cater for user requirements in the form
of updates and deletions.

153

Index

ASM, 25, 30
distributed, 33
move, 32
rule, 31
state, 27
typed, 43

attribute
nested, 83
representing, 86

dialogue
object, 57
type, 120

formula, 27, 28
fragmentation, 139
function

basic, 26
controlled, 26
derived, 26
dynamic, 26
monitored, 26
out, 26
shared, 26
static, 26

generalised subset, 84
ground model, 34, 36, 53

HERM, 83
algebra, 87
calculus query, 88
instance, 86

join, 48

labeled component property, 44

minimal common supertype, 44

refinement
Correct, 37

reserve, 32
run, 26, 32

partially ordered, 34
sequential, 33

schema
dominance, 88
equivalence, 88

signature, 26, 45
state, 27
subtype, 44
superuniverse, 27

term, 27, 47
transition rule, 25, 28

update, 30

variable assignment, 27
view

materialised, 133, 134
vocabulary, 26

154

Bibliography

[1] Abrial, J.-R. The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, 1996.

[2] Adamson, C., and Venerable, M. Data Warehouse Design Solutions. Wiley
Computer Publishing, 1998.

[3] Agerholm, S., and Larsen, P. G. A Lightweight Approach to Formal Methods.
In Proceedings of the International Workshop on Current Trends in Applied Formal
Methods (Boppard, Germany, 1998), Springer-Verlag.

[4] Agrawal, D., Abbadi, A. E., Singh, A., and Yurek, T. Efficient view
maintenance at data warehouses. In SIGMOD (1997), pp. 417–427.

[5] Agrawal, R., Gupta, A., and Sarawagi, S. Modeling multidimensional
database. In Proc. Data Engineering Conference, Birmingham (1997), pp. 232–243.

[6] Baralis, E., Paraboschi, S., and Teniente, E. Materialized views selection
in a multidimensional database. In VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece (1997),
M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A.
Jeusfeld, Eds., Morgan Kaufmann, pp. 156–165.

[7] Barnett, M., Campbell, C., Schulte, W., and Veanes, M. Specification,
simulation and testing of com components using abstract state machines. In Formal
Methods and Tools for Computer Science (Proceedings of Eurocast 2001), Universi-
dad de Las Palmas de Gran Canaria, Canary Islands, Spain (2001), R. Moreno-Daz
and A. Quesada-Arencibia, Eds., pp. 266–270.

[8] Biskup, J., and Convent, B. A formal view integration method. In Proceed-
ings of the 1986 ACM SIGMOD International Conference on Management of Data.
Association for Computing Machinery, 1986, pp. 398–407.

[9] Blaschka, M., Sapia, C., and Hoefling, G. On schema evolution in multidi-
mensional databases. In Data Warehousing and Knowledge Discovery – DaWaK’99
(1999), M. Mohania and A. M. Tjoa, Eds., vol. 1676 of LNCS, Springer-Verlag,
pp. 153–164.

[10] Blass, A., and Gurevich, J. Abstract state machines capture parallel algo-
rithms. ACM Transactions on Computational Logic 4, 4 (2003), 578–651.

[11] Boehm, B. W. A spiral model of software development and enhancement. Com-
puter 21, 5 (1988), 61–72.

155

Jane Qiong Zhao BIBLIOGRAPHY

[12] Börger, E. Why use evolving algebras for hardware and software engineering? In
SOFSEM ’95: Proceedings of the 22nd Seminar on Current Trends in Theory and
Practice of Informatics (London, UK, 1995), Springer-Verlag, pp. 236–271.

[13] Börger, E. High level system design and analysis using abstract state machines.
In Current Trends in Applied Formal Methods (FM-Trends 98) (1999), D.Hutter,
W.Stephan, P.Traverso, and M.Ullman, Eds., Springer LNCS, pp. 1–43.

[14] Börger, E. The ASM ground model method as a foundation for requirements
engineering. In Verification: Theory and Practice (2003), pp. 145–160.

[15] Börger, E. The ASM refinement method. Formal Aspects of Computing 15 (2003),
237–257.

[16] Börger, E., and Glässer, U. Modelling and analysis of distributed and reactive
systems using evolving algebras. Tech. Rep. BRICS- NS-95- 4, University of Aarhus,
1995.

[17] Börger, E., and Stärk, R. Abstract State Machines. Springer-Verlag, Berlin
Heidelberg New York, 2003.

[18] Börger, E., Stärk, R., and Schmid, J. Java and the Java Virtual Machine:
Definition, Verification and Validation. Springer-Verlag, Berlin Heidelberg New
York, 2001.

[19] Bouzeghoub, M., and Kedad, Z. A logical model for data warehouse design and
evolution. In DaWaK 2000: Proceedings of the Second International Conference on
Data Warehousing and Knowledge Discovery (London, UK, 2000), Springer-Verlag,
pp. 178–188.

[20] Bowen, J. The Z notation. http://vl.zuser.org/.

[21] Bowen, J. The B-method, 2000. http://vl.fmnet.info/b/.

[22] Bowen, J., and Reeves, S. Formal models for informal gui designs. Electron.
Notes Theor. Comput. Sci. 183 (2007), 57–72.

[23] Bowen, J. P., and Hinchey, M. G. Ten commandments of formal methods.
IEEE Computer 28, 4 (1995), 56–63.

[24] Chandra, A., and Harel, D. Computable queries for relational data bases.
Journal of Computer and System Sciences 21 (1980).

[25] Cunningham, C., Song, I.-Y., and Chen, P. P. Data warehouse design to
support customer relationship management analyses. In DOLAP ’04: Proceedings
of the 7th ACM international workshop on Data warehousing and OLAP (New York,
NY, USA, 2004), ACM, pp. 14–22.

[26] Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R., Eds. Structured pro-
gramming. Academic Press Ltd., London, UK, UK, 1972.

[27] de Roever, W.-P., and Engelhardt, K. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge University Press, 1998.

156

BIBLIOGRAPHY Jane Qiong Zhao

[28] Del Castillo, G., Gurevich, Y., and Stroetmann, K. Typed abstract
state machines. unpublished, available from http://research.microsoft.com/ gure-
vich/Opera/137.pdf, 1998.

[29] Derrick, J., and Boiten, E. Refinement in Z and object-Z: foundations and
advanced applications. Springer-Verlag, London, UK, 2001.

[30] Diller, A. Z: An Introduction to Formal Methods. Wiley, 1994.

[31] DMReview.com. DW Basics Channel, 2008.
http://www.dmreview.com/channels/dw basics.html.

[32] Fitzgerald, J. The VDM Portal. http://www.vdmportal.org/twiki/bin/view.

[33] Fitzgerald, J., and Larsen, P. G. Modelling Systems: Practical Tools and
Techniques for Software Developmen. Cambridge University Press, 1998.

[34] Golfarelli, M., Maio, D., and Rizzi, S. Conceptual design of data warehouses
from E/R schema. In HICSS ’98: Proceedings of the Thirty-First Annual Hawaii
International Conference on System Sciences-Volume 7 (Washington, DC, USA,
1998), IEEE Computer Society, p. 334.

[35] Golfarelli, M., and Rizzi, S. Methodological framework for data warehouse
design. In International Workshop on Data Warehousing and OLAP (1998), pp. 3–
9.

[36] Griffin, T., and Libkin, L. Incremental maintenance of views with duplicates. In
Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, San Jose, California, May 22-25, 1995 (1995), M. J. Carey and D. A.
Schneider, Eds., ACM Press, pp. 328–339.

[37] Gupta, A., Mumick, I. S., and Ross, K. A. Adapting materialized views after
redefinitions. In ACM SIGMOD (1995), pp. 211–222.

[38] Gupta, A., Mumick, I. S., and Subrahmanian, V. S. Maintaining views
incrementally. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, Washington, D.C., May 26-28, 1993 (1993), P. Buneman
and S. Jajodia, Eds., ACM Press, pp. 157–166.

[39] Gupta, H. Selection of views to materialize in a data warehouse. In ICDT (1997),
pp. 98–112.

[40] Gupta, H., Harinarayan, V., Rajaraman, A., and Ullman, J. D. Index
selection for OLAP. In ICDE (1997), pp. 208–219.

[41] Gupta, H., and Mumick, I. S. Selection of views to materialize under a main-
tenance cost constraint. Lecture Notes in Computer Science 1540 (1999), 453–470.

[42] Gurevich, Y. Evolving algebras: An attempt to discover semantics. In Current
Trends in Theoretical Computer Science, G. Rozenberg and A. Salomaa, Eds. World
Scientific, River Edge, NJ, 1993, pp. 266–292.

[43] Gurevich, Y. Evolving algebras 1993: Lipari Guide. In Specification and Valida-
tion Methods, E. Börger, Ed. Oxford University Press, 1994, pp. 9–37.

157

Jane Qiong Zhao BIBLIOGRAPHY

[44] Gurevich, Y. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic 1, 1 (2000), 77–111.

[45] Gurevich, Y., Sopokar, N., and Wallace, C. Formalizing database recovery.
Journal of Universal Computer Science 3, 4 (1997), 320–340.

[46] Hall, A. Correctness by construction.
http://www.anthonyhall.org/html/technology.html.

[47] Hall, A. Seven myths of formal methods. IEEE Softw. 7, 5 (1990), 11–19.

[48] Harinarayan, V., Rajaraman, A., and Ullman, J. D. Implementing data
cubes efficiently. In Proceedings of ACM SIGMOD ’96, Montreal, June 1996.

[49] Huggins, J. Abstract state machines, 1996. http://www.eecs.umich.edu/gasm/.

[50] Hull, R. Relative information capacity of simple relational database schemata.
SIAM Journal of Computing 15, 3 (1986), 856–886.

[51] Husemann, B., Lechtenborger, J., and Vossen, G. Conceptual data ware-
house modeling. In Design and Management of Data Warehouses (2000), p. 6.

[52] Inmon, B. Data mart does not equal data warehouse. DM Direct Newsletter (1999).

[53] Inmon, W. Building the Data Warehouse. Wiley & Sons, New York, 1996.

[54] Jacobson, I., Booch, G., and Rumbaugh, J. The unified software development
process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[55] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. Object-
oriented Software Engineering: A Use-Case Driven Approach. Addison-Wesley,
1992.

[56] Jones, C. Systematic software development using VDM.
http://www.vdmportal.org/twiki/bin/view/Main/Jonesbook.

[57] Kedad, Z., and Métais, E. Dealing with semantic heterogeneity during data
integration. In Conceptual Modeling – ER’99 (1999), J. Akoka, M. Bouzeghoub,
I. Comyn-Wattiau, and E. Métais, Eds., vol. 1728 of LNCS, Springer-Verlag,
pp. 325–339.

[58] Kimball, R. The Data Warehouse Toolkit. John Wiley & Sons, 1996.

[59] Kimball, R. A dimensional modeling manifesto. DBMS 10, 9 (1997), 58–70.

[60] Koh, J., and Chen, A. Integration of heterogeneous object schemas. In Entity-
Relationship Approach - ER’93, R. Elmasri, V. Kouramajian, and B. Thalheim,
Eds., vol. 823 of LNCS. Springer-Verlag, 1994, pp. 297–314.

[61] Kotidis, Y., and Roussopoulos, N. A case for dynamic view management.
ACM Trans. Database Syst. 26, 4 (2001), 388–423.

[62] Labio, W. J., Zhuge, Y., Wiener, J. L., Gupta, H., Garćıa-Molina,
H., and Widom, J. The WHIPS prototype for data warehouse creation and
maintenance. In SIGMOD (1997), pp. 557–559.

158

BIBLIOGRAPHY Jane Qiong Zhao

[63] Larson, J., Navathe, S. B., and Elmasri, R. A theory of attribute equivalence
in databases with application to schema integration. IEEE Transactions on Software
Engineering 15, 4 (1989), 449–463.

[64] Lawrence, M., and Rau-Chaplin, A. Dynamic view selection for OLAP. In
DaWaK (2006), pp. 33–44.

[65] Lee, K. Y., Son, J. H., and Kim, M.-H. Efficient incremental view maintenance
in data warehouses. In CIKM (2001), pp. 349–357.

[66] Lehmann, T. Ein pragmatisches Vorgehenskonzept zur Integration und Koopera-
tion von Informationssystemen. PhD thesis, TU Clausthal, 1999.

[67] Lehmann, T., and Schewe, K.-D. A pragmatic method for the integration
of higher-order Entity-Relationship schemata. In Conceptual Modeling - ER 2000,
A. H. F. Laender, S. W. Liddle, and V. C. Storey, Eds., vol. 1920 of LNCS. Springer-
Verlag, 2000, pp. 37–51.

[68] Lehner, W., Albrecht, J., and Wedekind, H. Normal forms for multidimen-
sional databases. In SSDBM (1998), pp. 63–72.

[69] Lenz, H.-J., and Shoshani, A. Summarizability in OLAP and statistical data
bases. In Statistical and Scientific Database Management (1997), pp. 132–143.

[70] Levine, D., Krehbiel, T., and Berenson, M. Business Statistics: A First
Course. Prentice-Hall, New Jersey, 2000.

[71] Lewerenz, J., Schewe, K.-D., and Thalheim, B. Modelling data warehouses
and OLAP applications using dialogue objects. In Conceptual Modeling – ER’99,
J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E. Métais, Eds., vol. 1728 of
LNCS. Springer-Verlag, 1999, pp. 354–368.

[72] Luján-Mora, S., and Trujillo, J. A comprehensive method for data warehouse
design. In DMDW (2003).

[73] Ma, H., and Schewe, K.-D. A heuristic approach to horizontal fragmentation in
object oriented databases. In Proceedings of the 2004 Baltic Conference on Databases
and Information Systems (Riga, Latvia, 2004).

[74] Ma, H., and Schewe, K.-D. Query cost analysis for horizontally fragmented
complex value databases. In Proceedings of the Eighth Conference on Advances in
Databases and Information Systems (Budapest, Hungary, 2004).

[75] Ma, H., Schewe, K.-D., Thalheim, B., and Zhao, J. View integration and
cooperation in databases, data warehouses and web information systems. Journal
on Data Semantics IV (2005), 213–249.

[76] Mazón, J.-N., Trujillo, J., Serrano, M., and Piattini, M. Applying MDA
to the development of data warehouses. In DOLAP (2005), pp. 57–66.

[77] Moody, D. L., and Kortink, M. A. R. From enterprise models to dimensional
models: a methodology for data warehouse and data mart design. In Design and
Management of Data Warehouses (2000), p. 5.

159

Jane Qiong Zhao BIBLIOGRAPHY

[78] Morgan, C. Programming from specifications (2nd ed.). Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, UK, 1994.

[79] Morzy, T., and Wrembel, R. Modeling a multiversion data warehouse: A
formal approach. In ICEIS (1) (2003), pp. 120–127.

[80] Mumick, I. S., Quass, D., and Mumick, B. S. Maintenance of data cubes and
summary tables in a warehouse. In SIGMOD (1997), pp. 100–111.

[81] Özsu, T., and Valduriez, P. Principles of Distributed Database Systems.
Prentice-Hall, 1999.

[82] Pedersen, T. B., and Jensen, C. S. Multidimensional data modeling for com-
plex data. In ICDE (1999), pp. 336–345.

[83] Prat, N., Akoka, J., and Comyn-Wattiau, I. A UML-based data warehouse
design method. Decis. Support Syst. 42, 3 (2006), 1449–1473.

[84] Prinz, A., and Thalheim, B. Operational semantics of transactions. In Database
Technologies 2003: Fourteenth Australasian Database Conference (2003), K.-D.
Schewe and X. Zhou, Eds., vol. 17 of Conferences in Research and Practice of In-
formation Technology, pp. 169–179.

[85] pUML Group. The precise UML group. http://www.cs.york.ac.uk/puml/.

[86] Qian, X. Correct schema transformations. In Advances in Database Technology
- EDBT’96, P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, Eds., vol. 1057 of
LNCS. Springer-Verlag, 1996, pp. 114–126.

[87] Quass, D. Maintenance expressions for views with aggregation. In VIEWS (1996),
pp. 110–118.

[88] Reeves, S., and Streader, D. Stepwise refinement of processes. Electronic
Notes in Theoretical Computer Scienece 160 (2006), 275–289.

[89] Rizzi, S., Abelló, A., Lechtenbörger, J., and Trujillo, J. Research in
data warehouse modeling and design: dead or alive? In DOLAP (2006), pp. 3–10.

[90] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[91] Sapia, C., Blaschka, M., Hoefling, G., and Dinter, B. Extending the E/R
model for the multidimensional paradigm. vol. 1552 of LNCS, Springer, pp. 105–116.

[92] Schellhorn, G. Verification of Abstract State Machines. PhD thesis, University
of Ulm, 1999.

[93] Schellhorn, G. Verification of ASM refinements using generalized forward sim-
ulation. j-jucs 7, 11 (2001), 952–979.

[94] Schellhorn, G. ASM refinement and generalizations of forward simulation in
data refinement: a comparison. Theor. Comput. Sci. 336, 2-3 (2005), 403–435.

[95] Schellhorn, G. ASM refinement preserving invariants. In Proc. 14th Inter-
national Workshop on Abstract State Machines – ASM 2007 (Grimstad, Norway,
2007), A. Prinz, Ed.

160

BIBLIOGRAPHY Jane Qiong Zhao

[96] Schellhorn, G. Completeness of ASM refinement. In Proceedings of REFINE
2008 (2008), ENTCS. to appear.

[97] Schewe, K.-D. Specification and development of correct relational database pro-
grams. Tech. rep., Clausthal Technical University, Germany, 1997.

[98] Schewe, K.-D. UML: A modern dinosaur? – a critical analysis of the unified mod-
elling language. In Information Modelling and Knowledge Bases XII, H. Jaakkola,
H. Kangassalo, and E. Kawaguchi, Eds., Frontiers in Artificial Intelligence and Ap-
plications. IOS Press, Amsterdam, 2001, pp. 185–202.

[99] Schewe, K.-D., and Schewe, B. Integrating database and dialogue design.
Knowledge and Information Systems 2, 1 (2000), 1–32.

[100] Schewe, K.-D., and Zhao, J. Typed abstract state machines for data-intensive
applications. Journal Knowledge and Information Systems 15, 3 (2008), 381–391.

[101] Sciore, E., Siegel, M., and Rosenthal, A. Using semantic values to facili-
tate interoperability among heterogeneous information systems. ACM TODS 19, 2
(1994), 254–290.

[102] Sen, A., and Sinha, A. P. A comparison of data warehousing methodologies.
Commun. ACM 48, 3 (2005), 79–84.

[103] Simitsis, A. Mapping conceptual to logical models for ETL processes. In DOLAP
’05: Proceedings of the 8th ACM international workshop on Data warehousing and
OLAP (New York, NY, USA, 2005), ACM Press, pp. 67–76.

[104] Spaccapietra, S., and Parent, C. View integration – a step forward in solving
structural conflicts. IEEE Transactions on Knowledge and Data Engineering 6, 2
(1994), 258–274.

[105] Spivey, J. M. Understanding Z: a specification language and its formal semantics.
Cambridge University Press, New York, NY, USA, 1988.

[106] Thalheim, B. Entity-Relationship Modeling: Foundations of Database Technology.
Springer-Verlag, 2000.

[107] Theodoratos, D. Detecting redundancy in data warehouse evolution. In Concep-
tual Modeling – ER’99 (1999), J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and
E. Métais, Eds., vol. 1728 of LNCS, Springer-Verlag, pp. 340–353.

[108] Theodoratos, D., Dalamagas, T., Simitsis, A., and Stavropoulos, M. A
randomized approach for the incremental design of an evolving data warehouse. In
Proceedings of the 20th International Conference on Conceptual Modeling: Concep-
tual Modeling, vol. 2224 of LNCS. Springer-Verlag, 2001, pp. 325–338.

[109] Theodoratos, D., and Sellis, T. Dynamic data warehouse design. In Data
Warehousing and Knowledge Discovery – DaWaK’99, M. Mohania and A. M. Tjoa,
Eds., vol. 1676 of LNCS. Springer-Verlag, 1999, pp. 1–10.

[110] Todman, C. Designing a Data Warehouse: Supporting Customer Relationship
Management. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

161

Jane Qiong Zhao BIBLIOGRAPHY

[111] Tryfona, N., Busborg, F., and Christiansen, J. G. B. starER: A conceptual
model for data warehouse design. In International Workshop on Data Warehousing
and OLAP (1999), pp. 3–8.

[112] Tsois, A., Karayannidis, N., and Sellis, T. K. MAC: Conceptual data
modeling for OLAP. In Design and Management of Data Warehouses (2001), p. 5.

[113] Turull Torres, J. M. On the expressibility and computability of untyped
queries. Annals of Pure and Applied Logic 108, 1-3 (2001), 345–371.

[114] uni trier.de. Integrated formal methods.
http://www.informatik.uni-trier.de/ ley/db/conf/ifm/index.html.

[115] Van den Bussche, J. Formal Aspects of Object Identity in Database Manipulation.
PhD thesis, University of Antwerp, 1993.

[116] Vassiliadis, P. Modeling multidimensional databases, cubes and cube operations.
In SSDBM ’98: Proceedings of the 10th International Conference on Scientific and
Statistical Database Management (Washington, DC, USA, 1998), IEEE Computer
Society, pp. 53–62.

[117] Widom, J. Research problems in data warehousing. In Proceedings of the 4th In-
ternational Conference on Information and Knowledge Management (1995), ACM.

[118] Wikipedia. B-method. http://en.wikipedia.org/wiki/B-Method.

[119] Wikipedia. Formal methods. http://en.wikipedia.org/wiki/Formal methods.

[120] Wikipedia. Software development process.
http://en.wikipedia.org/wiki/Software development process.

[121] Wikipedia. VDM - Industry Experience.
http://en.wikipedia.org/wiki/Vienna Development Method.

[122] Wikipedia. Z notation. http://en.wikipedia.org/wiki/Z notation.

[123] Wirth, N. Program development by stepwise refinement. Commun. ACM 14, 4
(1971), 221–227.

[124] Zamulin, A. V. Typed Gurevich machines revisited. Joint Bulletin of NCC and
IIS on Computer Science 5 (1997), 1–26.

[125] Zhuge, Y., Garcia-Molina, H., Hammer, J., and Widom, J. View mainte-
nance in a warehousing environment. In SIGMOD Conference (1995), pp. 316–327.

162

