24,503 research outputs found

    Integrating Conflict Driven Clause Learning to Local Search

    Full text link
    This article introduces SatHyS (SAT HYbrid Solver), a novel hybrid approach for propositional satisfiability. It combines local search and conflict driven clause learning (CDCL) scheme. Each time the local search part reaches a local minimum, the CDCL is launched. For SAT problems it behaves like a tabu list, whereas for UNSAT ones, the CDCL part tries to focus on minimum unsatisfiable sub-formula (MUS). Experimental results show good performances on many classes of SAT instances from the last SAT competitions

    Translation-based Constraint Answer Set Solving

    Full text link
    We solve constraint satisfaction problems through translation to answer set programming (ASP). Our reformulations have the property that unit-propagation in the ASP solver achieves well defined local consistency properties like arc, bound and range consistency. Experiments demonstrate the computational value of this approach.Comment: Self-archived version for IJCAI'11 Best Paper Track submissio

    Subsumption Algorithms for Three-Valued Geometric Resolution

    Full text link
    In our implementation of geometric resolution, the most costly operation is subsumption testing (or matching): One has to decide for a three-valued, geometric formula, if this formula is false in a given interpretation. The formula contains only atoms with variables, equality, and existential quantifiers. The interpretation contains only atoms with constants. Because the atoms have no term structure, matching for geometric resolution is hard. We translate the matching problem into a generalized constraint satisfaction problem, and discuss several approaches for solving it efficiently, one direct algorithm and two translations to propositional SAT. After that, we study filtering techniques based on local consistency checking. Such filtering techniques can a priori refute a large percentage of generalized constraint satisfaction problems. Finally, we adapt the matching algorithms in such a way that they find solutions that use a minimal subset of the interpretation. The adaptation can be combined with every matching algorithm. The techniques presented in this paper may have applications in constraint solving independent of geometric resolution.Comment: This version was revised on 18.05.201

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation
    corecore