696 research outputs found

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    Proof-of-Concept Application - Annual Report Year 1

    Get PDF
    In this document the Cat-COVITE Application for use in the CATNETS Project is introduced and motivated. Furthermore an introduction to the catallactic middleware and Web Services Agreement (WS-Agreement) concepts is given as a basis for the future work. Requirements for the application of Cat-COVITE with in catallactic systems are analysed. Finally the integration of the Cat-COVITE application and the catallactic middleware is described. --Grid Computing

    Grid and P2P middleware for scientific computing systems

    Get PDF
    Grid and P2P systems have achieved a notable success in the domain of scientific and engineering applications, which commonly demand considerable amounts of computational resources. However, Grid and P2P systems remain still difficult to be used by the domain scientists and engineers due to the inherent complexity of the corresponding middleware and the lack of adequate documentation. In this paper we survey recent developments of Grid and P2P middleware in the context of scientific computing systems. The differences on the approaches taken for Grid and P2P middleware as well as the common points of both paradigms are highlighted. In addition, we discuss the corresponding programming models, languages, and applications.Peer ReviewedPostprint (published version

    Improved Cloud resource allocation: how INDIGO-Datacloud is overcoming the current limitations in Cloud schedulers

    Get PDF
    Trabajo presentado a: 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016) 10–14 October 2016, San Francisco.Performing efficient resource provisioning is a fundamental aspect for any resource provider. Local Resource Management Systems (LRMS) have been used in data centers for decades in order to obtain the best usage of the resources, providing their fair usage and partitioning for the users. In contrast, current cloud schedulers are normally based on the immediate allocation of resources on a first-come, first-served basis, meaning that a request will fail if there are no resources (e.g. OpenStack) or it will be trivially queued ordered by entry time (e.g. OpenNebula). Moreover, these scheduling strategies are based on a static partitioning of the resources, meaning that existing quotas cannot be exceeded, even if there are idle resources allocated to other projects. This is a consequence of the fact that cloud instances are not associated with a maximum execution time and leads to a situation where the resources are under-utilized. These facts have been identified by the INDIGO-DataCloud project as being too simplistic for accommodating scientific workloads in an efficient way, leading to an underutilization of the resources, a non desirable situation in scientific data centers. In this work, we will present the work done in the scheduling area during the first year of the INDIGO project and the foreseen evolutions.The authors want to acknowledge the support of the INDIGO-DataCloud (grant number 653549) project, funded by the European Commission’s Horizon 2020 Framework Programme.Peer Reviewe

    Geoprocessing Optimization in Grids

    Get PDF
    Geoprocessing is commonly used in solving problems across disciplines which feature geospatial data and/or phenomena. Geoprocessing requires specialized algorithms and more recently, due to large volumes of geospatial databases and complex geoprocessing operations, it has become data- and/or compute-intensive. The conventional approach, which is predominately based on centralized computing solutions, is unable to handle geoprocessing efficiently. To that end, there is a need for developing distributed geoprocessing solutions by taking advantage of existing and emerging advanced techniques and high-performance computing and communications resources. As an emerging new computing paradigm, grid computing offers a novel approach for integrating distributed computing resources and supporting collaboration across networks, making it suitable for geoprocessing. Although there have been research efforts applying grid computing in the geospatial domain, there is currently a void in the literature for a general geoprocessing optimization. In this research, a new optimization technique for geoprocessing in grid systems, Geoprocessing Optimization in Grids (GOG), is designed and developed. The objective of GOG is to reduce overall response time with a reasonable cost. To meet this objective, GOG contains a set of algorithms, including a resource selection algorithm and a parallelism processing algorithm, to speed up query execution. GOG is validated by comparing its optimization time and estimated costs of generated execution plans with two existing optimization techniques. A proof of concept based on an application in air quality control is developed to demonstrate the advantages of GOG
    corecore