
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

GRID resource information services for scheduling in DIET

Frauenkron, Peter

Award date:
2006

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/grid-resource-information-services-for-scheduling-in-diet(68726393-82ce-409a-80e4-ec751a255863).html

FUNDP
Institute of Computer Science

Rue Grandgagnage, 21
B-5000 Namur Belgium

Grid Resource Information Services

for
Scheduling in DIET

Promotor: Prof. Vincent ENGLEBERT

Academic Year 2005-2006

Dissertation presented for obtaining
the grade as

Master in Computer Science
by

Peter FRAUENKRON

Grid Resource Information Services for Scheduling in DIET

Abstract

The objective of grid computing is to confederate heterogeneous and distributed computer re-
sources so as to aggregate the power. The scheduler is one element necessary for obtaining high
performance of the system and it requires monitoring tools that provide the information crucial for
the scheduler to place the request on the di�erent servers. Actually, DIET o�ers the collection of
information by FAST [QUINSON, 02]. For this dissertation, a manager for performance prediction
tools, called CoRI and a basic measurement tool are developed. The principles of the grid, the
scheduling and performance prediction will be introduced by the illustration of DIET. CoRI's de-
sign and implementation will be expounded and an overview of some other performance prediction
tools available will be shown. Finally the results of a scheduler based on this information will be
commented.

Keywords: grid computing, monitoring, performance prediction, resource information service,
scheduling

Services d'information sur les ressources grilles pour l'ordonnancement dans
DIET

Résumé

L'objectif d'une grille de calcul est l'agrégation des ressources d'ordinateurs hétérogènes et dis-
tribuées a�n de réunir leur puissance de calcul. Des outils de monitoring fournissent les informa-
tions cruciales à l'ordonnanceur pour attribuer les tâches aux serveurs . DIET, un intergiciel de
grille, utilise un ensemble d'informations via FAST [QUINSON, 02]. Pour ce mémoire un manager
pour des outils de prédiction de performance et un simple outil d'observation ont été élaborés. Les
principes d'une grille, d'ordonnancement, de prédiction de performance et de monitoring seront
introduits par l'illustration de DIET. Leurs conceptions et leurs implémentations seront également
exposées. D'autres outils de prédiction de performance seront abordés. Finalement, les résultats
d'un ordonnanceur utilisant les informations seront commentés.
Mots-clés: calcul de grille, monitoring, prédiction de performance, service d'information de ressources,
ordonnanceur.

Acknowledgements

Great thanks are in order for everyone who helped me with this dissertation, especially to Vincent
Englebert, who wanted to guide this work at Namur, and to Eddy Caron, my supervisor at Lyon, to
the whole team GRAAL, especially Eric Boix, Holly Dail, Alan Su, Raphaël Bolze and Yves Caniou
who revealed for me the mysteries of the program DIET and accessory programs. Finally I wish to
thank Piers Eyre-Walker and Holly Dail for correcting my grammar and spelling mistakes in this
manuscript.

Contents

Introduction 5

1 Grid computing 6
1.1 What is computational grid? . 7
1.2 Exploiting the grid . 9
1.3 Approaches to build a grid . 9

2 DIET, Distributed Interactive Engineering Toolbox 11
2.1 Introduction . 11
2.2 GridRPC Programming Model . 12
2.3 DIET components . 13
2.4 DIET initialization . 16
2.5 Solving a problem . 16

3 The scheduler 18
3.1 What scheduling means . 18
3.2 Typologies . 20
3.3 Scheduling in DIET . 22
3.4 Scheduler's needs . 24
3.5 Using resource information services in DIET scheduling 24
3.6 Plug-in scheduler . 25

4 Performance evaluation 27
4.1 What performance means . 27
4.2 Which elements may a�ect performance? . 28
4.3 The Grid Resource Information Service . 31

4.3.1 Performance prediction . 33
4.3.2 Resource performance forecasting service . 37
4.3.3 Monitoring services . 38
4.3.4 Measurement service . 42

4.4 Observations . 47
4.5 Summary . 49

1

CONTENTS

5 CoRI 50
5.1 Requirements analysis . 50
5.2 Solution . 51

5.2.1 Global architecture . 52
5.2.2 CoRI Manager . 52
5.2.3 CoRI-Easy module . 56

5.3 Changes in the DIET software . 61
5.4 Examples . 63
5.5 Testing on the cluster GDS/DMI . 63

5.5.1 Example 1: Simple request . 63
5.5.2 Test 2 . 67
5.5.3 Test 3 . 70

5.6 Future works . 71

Conclusion 73

2

Glossary

CORBA Common Object Request Broker Architecture

CoRI The Collectors of Resource Information is a management system for resource information
using FAST and CoRI-Easy. See Chapter 5 for more information.

CoRI-Easy A basic dynamic system providing availability metrics. See Chapter 5.

DIET The Distributed Interactive Engineering Toolbox can be seen as a middleware for grid ap-
plication. See Chapter 2 for more information.

FAST The Fast Agent's System Timer [QUINSON, 02] provides application-speci�c performance
forecast from SeD level.

Ganglia Ganglia is a scalable distributed monitoring system for high-performance computing sys-
tems such as clusters and Grids. [MASSIE and al., 04].

Globus The Globus Toolkit is an open source software toolkit used for building Grid systems
and applications. It is being developed by the Globus Alliance and many others all over the
world. [GLOBUS]

Grid A computational grid is a hardware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end computational
capabilities [FOSTER and al, 98].

GridRPC �GridRPC is an easy-to-use API for Grids based on the established remote procedure
call model� [GRIDRPC]. The GridRPC is an extension of the remote process call. The mech-
anism of RPC is applied to the �eld of grid computing.
The GridRPC API allows clients to access in a unique way to existing grid computing
systems like NetSolve, Ninf or DIET. For more details about this work see the articles
[NAKADA and al, 02] and [SEYMOUR and al, 04].

LA The Local Agent is the access point for the SeD and informs the MA of the presence of the
SeD. See Chapter 2.

Load balancing �The assignment of equivalent amounts of work to processors which will execute
concurrently.� [BERMAN, 99]

3

CONTENTS

LDAP The Lightweight Directory Access Protocol, see [HOWES and al., 99] for more information.

MA The Master Agent is one of the components of the grid architecture. Among other things, it
is the access point for the client and schedules the clients' request. See Chapter 2.

Metric The term metrics refers to the criteria used to evaluate the performance of the system. See
Section 4.1 for a more detailed explication.

MPI The Message Passing Interface �is a library speci�cation for message-passing, proposed as a
standard by a broadly based committee of vendors, implementors, and users� [MPI]

NWS The Network Weather Service [WOLSKI and al, 99] is a dynamic system that provides avail-
ability metrics from SeD and agent level.

Performance estimate �A collection of data pertaining to the capabilities of a particular server
in the context of the particular client request.� [DAIL and al., 06]

PSE Problem Solving Environments

RPC The Remote Procedure Call is a protocol to simplify the implementation of distributed ap-
plications. A program should be able to use a function of another program that turns on
another machine without knowing the underlying network details. The RPC works with the
server-client model.

Scheduling �The assignment of work to resources within a speci�ed timeframe.� [BERMAN, 99]
The Chapter 3 explains in details this operation.

SeD The Server Daemon is the calculating machine. Chapter 2 explains this component.

4

Introduction

Grid computing is becoming more and more important for sharing power resources all over the
world. High performance schedulers that manage the assignment of request to these resources are
therefore needed. As a key component of the system, it is crucial that schedulers get the most
detailed information about the system components. Grid resource information services are conse-
quently deployed which will provide di�erent types of performance measurements.

The DIET toolkit facilitates the building of grids by acting as middleware. The toolkit includes
in particular job scheduling and a grid architecture, but there is no default resource information
service. Although the FAST and NWS resource information services can be used, we will show that
these will not always provide the information needed, and so, optimal scheduling will not attainable.
DIET consequently needs another service that can provide this information. In the literature, we
can �nd many information services, some of which are functionally equal to FAST or NWS, but
each one with di�erent goals and features. DIET's scheduling could also bene�t from these services.
We have therefore developed the CoRI system, that not only provides basic resource information,
but also allows an extension to other current or future information services.

The �rst chapter introduces the grid philosophy and di�erent possible approaches to the im-
plementation. The second chapter explains the engineering toolbox DIET, and the third chapter
explains the job of the scheduler, some typologies and the implementation in DIET. Chapter 4
introduces the performance evaluation and explains the di�erent types of resource information ser-
vices. It moreover explains the need for a new service by describing the requirements and problems
of resource information services. Finally, Chapter �ve describes the design and implementation of
the the new tool CoRI, that can satisfy these needs.

5

Chapter 1

Grid computing

Before explaining the grid, the following example shows the di�culties and limits of the ordinary
calculating machine paradigm. In this dissertation we will use the POV-Ray software for facilitating
the comprehension of the grid. The Persistence of Vision Raytracer (POV-Ray) [POVRAY] is a
high-quality, totally free tool for creating stunning three-dimensional graphics. The principle of
POV-Ray is to create an image by using a simple text �le as information (the image description
�le). Information in the �le (i.e. the position of the light source, the position and structure of
the objects, etc.) allows the program to build an image of high resolution and often with amazing
results (see Figure 1.1)1.
The problem of the program is the computational power and time needed to build this high-

Figure 1.1: POV-Ray example by gerberc(2003)

resolution image. On the one hand, the time it takes to calculate this image on an ordinary
computer can exceed some hours: the user has to wait and the computer is occupied at nearly 100

1http://www.renderosity.com/viewed.ez?galleryid=568961&Start=49&Artist=gerberc&ByArtist=Yes

6

1.1. WHAT IS COMPUTATIONAL GRID?

percent during this calculation. On the other hand we will have perhaps other machines accessible
via the network and these machines may be unoccupied at this time.
The question now is what can be done to speed up the process of computing the image? The
answer is to use a grid computing system that provides the POV-Ray service. We will designate
this solution as POV-RayGrid.

1.1 What is computational grid?

A grid can be compared with an electric network (as well called a grid) where resources will be
applied. Not electricity will be provided to an important number of persons but services like com-
puting power, memory or storage space by bundling the resources available in a network.

The term resources has to be understood in the largest meaning, examples are not only compute
cycles, disk capacity, or network capacity, but also applications, data, sensors, or even humans. In
the example of POV-RayGrid the resources could be:

• the software POV-Ray,

• the hardware resources of the machines like number of CPUs, amount of memory, the band-
width between the client and the server,. . .

• also the image description �le can be a resource. The �le resides on the local machine, for
this reason we don't have to request it from the client.

A �rst de�nition of a computational grid can be found in the book �The Grid: Blueprint for a
New Computing Infrastructure� [FOSTER and al, 98].

De�nition 1 A computational grid is a hardware and software infrastructure that provides depend-
able, consistent, pervasive, and inexpensive access to high-end computational capabilities.

Why talking about an infrastructure? A computational grid must work with a large-scale
federation of resources. To achieve the necessary interconnections the federation requires signi�cant
hardware infrastructure. To control and monitor the resulting collection the federation requires
software infrastructure.

It is fundamental that the service has to be dependable. A grid must assure the adequate
use of resources for delivering services under established Quality of Service (QoS) requirements.
It seems to be logical as users to require assurances for qualities like response time, throughput,
availability, security.
The challenge is to work with a co-allocation of multiple resource types to meet complex user de-
mands. In the process, the utility of the combined system should be signi�cantly greater than the
sum of its parts.
The user could ask a grid with a response time and a throughput that are predictable, sustained,
and of high level.

7

1.1. WHAT IS COMPUTATIONAL GRID?

The ��ve nines� are a good example to show how important reliability is. Some systems have to run
with 99.999 percent availability. It means in average the system is down only 5 minutes during the
year. For example a computational grid is supporting the real time treatment of patient's medical
images. What would happen if this system is down during a complex brain operation? The user
needs the assurances of predictable, sustained, and often high levels of performance from each piece
of the federation. The degree of reliability always depends on the application, POV-RayGrid didn't
need a 5 nine platform.

A second fundamental concern is the need for consistency of service. To allow fundamen-
tal issues such as authentication, authorization, resource discovery, and resource access a Grid is
built from multi-purpose protocols and interfaces. It is important that these protocols and in-
terfaces are standard and open. The standards should hide heterogeneity without hindering the
high-performance execution and allowing scalability and pervasive access.

If pervasive access is guaranteed the user can be sure that the services are always available,
even if the user's environment is dynamic and in which resource failure is commonplace. This does
not mean that resources are everywhere or universally available but that the grid must tailor its
behavior as to extract the maximum performance from the available resources.

Finally, an infrastructure must o�er inexpensive access. A computational grid should o�er
attractive costs.

Other main characteristics of the grid are extracted from the articles [FOSTER, 02],
[BOTE-LORENZO and al, 04], and [FOSTER and al, 01].

Large scale: a grid must be able to deal with a number of resources ranging from just a few
to millions. This raises the very serious problem of avoiding potential performance degradation as
the grid size increases. A good example of this grid property is DIET, because it allows scalability
by using a special architecture. See Chapter 2.2 for detailed information of this particularity.

Geographical distribution: grid's resources may be located at distant places. For example
the Grid'5000 project has actual nine sites throughout France [GRID'5000].

Heterogeneity: a grid hosts both software and hardware resources that can be very varied
ranging from data, �les, software components or programs to sensors, scienti�c instruments, display
devices, personal digital organizers, computers, super-computers and networks.

Resource sharing: resources in a grid belong to many di�erent organizations that allow other
organizations (i.e. users) to access them. External resources can thus be used by applications,
promoting e�ciency and reducing costs. The sharing is not only �le exchange but rather direct
access to computers, data, and other resources.

Multiple administrations: each organization may establish di�erent security and administra-

8

1.2. EXPLOITING THE GRID

tive policies under which their owned resources can be accessed and used. As a result, the already
challenging network security problem is complicated even more with the need of taking into account
all di�erent policies.

Resource coordination: The key concept is the ability to negotiate resource-sharing arrange-
ments among a set of participating parties (providers and consumers) and then to use the resulting
resource pool for a purpose. Resources in a grid are not subject to centralized control. But the
sharing must be highly-controlled by addressing questions like security, policy, payment, or member-
ship in order to provide aggregated computing capabilities. The resulting set of individuals and/or
institutions de�ned by such sharing rules form what we call a virtual organization (VO).

In POV-RayGrid, the participating parties are the users who want create a new image, an agent
receiving and distributing the job and at least one server that is able to build the image. To de�ne
the VO, the access to this trio is limited by a password for the three components.

Transparent access: a grid should be seen as a single virtual computer. For this characteristic
the grid can be seen as a new type of operating system. The client is not aware of the complexity
of the underlying system.

1.2 Exploiting the grid

But how can grid computing now be used to deliver faster the answer to a request? If a problem
is too big to be treated as one, divide to conquer is the slogan to follow. Therefore problems with
high demand of resource will be subdivided in small problems. Also problems with a low demand
of resources can overwhelm a single machine. Constant dripping wears away the stone, and in our
context this would mean that machine's capacity will be overstepped by thousands or millions of
small requests per second. The grid dispatches the work to computers that have enough power to
treat a part of the problem. The parts can be treated at the same time, in parallel.
In the example of POV-RayGrid, either the user or the system has to specify the dimension of
each sub-image. The �rst sub-image could be the �rst 20 resolution lines of the image; the second
could be the image between the 21th and the 40th line, etc. Instead of sending only one request,
the client will send many smaller requests, and each request will indicate the lines to process. Once
the machines have created their sub-images they will return them to the client. The only thing the
client has to do is to assemble the sub-images.

The result of this segmentation is very easy to illustrate. On the Figure 1.2, the image is cut
into sub-images, but the creation of this one might be much faster than on a single machines.

1.3 Approaches to build a grid

Now that the principles of grid systems are clear, the question is how to implement the grid?
Di�erent approaches for grid programming are mentioned in the article [FOSTER and al, 98] and

9

1.3. APPROACHES TO BUILD A GRID

Figure 1.2: POV-RayGrid example after segmentation

some of the well-known models are cited here. The �rst approach consists of adapting models
that have already proved successful in sequential or parallel environments:

1. Using a grid-enabled shared-memory system (i.e. Teamster-G [LIANG and al, 05]),

2. using a grid-enabled MPI (i.e. MPICH-G2 [KARONIS and al, 03]),

3. using a grid-enabled �le system.

Newer models like service-oriented architecture (SOA) could response to other types of require-
ments. One example is the JLab's Lattice Portal [WATSON and al., 02] that uses the technology
of Web Service. Another approach is to use speci�c technologies that are e�ective in distributed
computing like Remote Procedure Call (RPC), or the object-oriented model based on techniques
such as the Common Object Request Broker Architecture (CORBA). The software engineering
advantage of these technologies is that their encapsulation properties facilitate the modular con-
struction of programs and the reuse of existing components. Some e�orts of these di�erent attempts
to provide a programming model and a corresponding system or a language appropriated for the
grid have been collected and catalogued by the Advanced Programming Models Research Group of
the Global Grid Forum [LEE and al, 01].

As we can see, there are multiple approaches for building a grid. After this short introduction
of grid models, we can now better describe in detail the DIET toolbox that uses one of these
approaches.

10

Chapter 2

DIET, Distributed Interactive

Engineering Toolbox

DIET is a toolbox for developing Application Service Provider systems easily (Network Enabled
Server systems) on Grid platforms. It is developed in the Laboratory of Computer Science in
Parallelism by the GRAAL team at the École Normale Supérieure in Lyon, France. The following
chapter is widely inspired by the DIET User's Manual guide [BOLZE and al., 06]

2.1 Introduction

DIET is based on the scheme and follows the GridRPC API de�ned within the Global Grid Fo-
rum [GRIDRPC]. This chapter will explain the basic architecture of DIET. To know more about
DIET and his additional tools (FAST for performance evaluation [QUINSON, 02], LogMgr for mon-
itoring, VizDIET for the visualization, GoDIET for the deployment,. . .), the reader can visit the
DIET home page http://graal.ens-lyon.fr/DIET.

The new resource information service CoRI-Easy and the information service manager CoRI
are specially built for the DIET toolbox. So it would be necessary to understand this software
environment and hence we can provide DIET useful and appropriated new tools.

DIET can be seen as a middleware for grids, this means an abstraction level is added on top
of existing grid technologies. It is no longer necessary to implement a complete architecture, it is
su�cient to implement the server and client side (the endpoints) for o�ering the functionality. Due
to the new abstraction level, it is necessary to explain the di�erent actors working with DIET:

DIET developers A DIET developer is a contributor of the DIET software. This person adds a
component to DIET to improve the utility of the toolbox DIET.

DIET service developers A DIET service developer uses the DIET API with the purpose to
build the endpoints of his own grid services.

11

2.2. GRIDRPC PROGRAMMING MODEL

Service users A service user launches the server and/or the client of a service created by a DIET
service developer.

Our example of POV-Ray now changes its concept. The old POV-RayGrid constitutes a com-
plete client-agent-server grid hierarchy. However the service implemented for the use in DIET does
not need the agent part and will thereby constitute only server and client. Hence this change
of needed components for a grid enabled POV-Ray service; we will designate this new service as
POV-RayService.

A service in DIET is placed on the server side of the architecture and will answer client's
requests (also called jobs or task) which are translations of general problems of the user.

2.2 GridRPC Programming Model

The GridRPC approach [SEYMOUR and al, 04] can be used to build Problem Solving Environ-
ments (PSE) on computational Grids. It includes the de�nition of an API and de�nes a model to
perform remote computation on servers. In such paradigm, the architecture consists of a scheme
that is close to the RPC (Remote Procedure Call) model. The Figure 2.1 shows this architecture.

Figure 2.1: The GridRPC approach with clients, an agent and servers

Client The client wants to solve a problem. He is in possession of the description of the problem
(the request). In the case of POV-RayGrid, the client would be the application that sends
the request for computing the image by a given description �le.

Server The server is the entity that solves the request. A server can be a simple home computer,
a bash system or a mainframe.

12

2.3. DIET COMPONENTS

Agent The agent receives the requests from the clients. He schedules these requests to the di�erent
SeDs he knows. This scheduling uses information about the performance of the platform gath-
ered by an information service. The performance can include static and dynamic information
such as software and hardware resources.

The GridRPC API de�nes the client API to send requests to a Network Enabled Server imple-
mentation. The function handle makes the link between the problem name on the client side and
the instance of such service available on the server side. Other aspects de�ned in the GridRPC are
the synchronous and asynchronous calls, a session ID for information about previous asynchronous
requests and a wait function on the client side.

This API is instantiated by several middleware such as DIET, Ninf [NAKADA and al, 99],
NetSolve [ARNOLD and al, 01], and XtremWeb [CAPPELLO and al., 05].

2.3 DIET components

At �rst, we have to know the architecture of DIET. Such one-agent-architectures are used in other
grid middleware (i.e. NetSolve [ARNOLD and al, 01] or Ninf [NAKADA and al, 99]), but they
would mean all the information has to go through one single point. And why is this a problem?

1. As we can see in Figure 2.1 this architecture would mean one single point of failure. If this
agent fails, the whole system gives out.
It is possible to �x this problem by using a backup agent that intervenes if the �rst agent falls
out.

2. Secondary, the work load on the agent can slow down the whole system or even bring the
system down.
Let's imaging a single agent grid system for POV-RayService that consists of thousand of
clients sending millions of description �les to a thousand of servers. The time and capacity to
coordinate all these requests would exceed the possibilities of one single machine.

Compared to this common architecture, the particularity of DIET is the avoidance of these disad-
vantages. Therefore the process of scheduling the requests is being modi�ed. There is no single
agent scheduling the requests, but DIET is distributing this job amongst a hierarchy of Local Agents
(LA) and Master Agents (MA). With this approach a high performance and scalable environment
can be obtained.

A brief description about the software architecture of DIET includes four di�erent components.
The server, called Server Daemon (SeD), contacts his local agent; the local agent contacts the master
agent; and �nally the client who contacts the master agent and the server daemon.

Figure 2.3 shows this architecture of DIET with the four main1 components and their interac-
tions.

1Other components are the CORBA nameservice, the NWS nameservice, the NWS memoryserver, and the NWS
sensors. They are not presented in this Figure to facilitate the comprehension of the more important components

13

2.3. DIET COMPONENTS

Figure 2.2: The global hierarchy of DIET's components, the clients, the master agents, the local
agents and the servers [BOLZE and al., 06]

Client
A client is an application which uses DIET to solve problems. DIET provides multiple APIs
for the client in order to connect to the master agent. The client can connect to DIET from
a web page (via HTTP request), a problem solving environment (PSE) such as Matlab 2

or Scilab 3, or from a compiled program (by an interface written in c).

Master Agent
The MA is the contact point for the client because requests are sent from clients to MA.
This agent is like a search engine, but instead of providing relevant internet pages for given

2Matlab is a high-level technical computing language and interactive environment for algorithm development,
data visualization, data analysis, and numeric computation. The reader can visit the home page of Matlab for more
information: www.mathworks.com/products/matlab/description1.html

3Scilab Scilab is a scienti�c software package for numerical computations providing a powerful open computing
environment for engineering and scienti�c applications. The reader can visit the home page of Scilab for more
information: www.scilab.org

14

2.3. DIET COMPONENTS

keywords, it provides the client with addresses of appropriated servers for a given request.
A second role is to be a contact point for the local agent. So the master agent is contact point
both for clients and for local agents.

But how does this connection to the MA work? The client has to know the contact address
(there is no automatic detection implemented yet). So the client connects to an MA by a
speci�c name server or by a web page which stores the various MA locations. Once the client
is connected to the MA and once the client's request is received, the MA collects computation
abilities from the servers and chooses the best one. The reference of the chosen server is
returned to the client. Finally, due to the higher abstraction, the MA does not need any
change for supporting whatever program that will run on the server.

Local Agent
Like a search engine, the MA needs information about servers from reliable sources. Search
engines have tools like crawlers for receiving this information, and in DIET the local agents are
providing this information. An LA is used as middleman between MA and servers. Therefore
the LA performs a partial scheduling on its sub-tree, which reduces the load at the MA.

For achieving this goal, the LA stores a list of children (other LAs or/and servers), specifying
for each child the services it is able to treat. For reducing a maximum the load at the MA
and as well for the LAs, a hierarchy of LAs may be deployed between an MA and the servers.

Server Daemon
The Server Daemon (SeD) encapsulates a computational server and o�ers server's resources.
It is responsible for computing requests arriving from the client. But it is not enough to o�er
only its resources, additionally it must give indications about its resources and their load for
simplifying the activity of the LA and MA.

For providing the resources of the server, the SeD o�ers services by declaring these services
to its parent LA or MA. For informing the MA and LA of its resources, the SeD stores
information like data types available locally (i.e. on the server), a list of problems that can
be solved on it, and performance-related information such as the amount of available memory
or the number of processors available.
This performance-related information can be retrieved by modules like NWS or FAST. Both
modules are described in Chapter 4.

In the POV-Ray example, two elements must be present at SeD level. The POV-Ray software
must be installed, and the SeD must o�er the service �POV-RayService� to their LA.

A special connection between master agents is possible, but only if special software is activated,
either JXTA [CARON and al.] or Multi-MA [DAHAN, 05]. This connection has a di�erent meaning
compared to the father-son meaning of the LA-SeD or MA-LA connection.

15

2.4. DIET INITIALIZATION

2.4 DIET initialization

�Figure 2.3 shows each step of the initialization of a simple Grid system. The architecture is built
in hierarchical order, each component connecting to its parent. The MA is the �rst entity to be
started (1). It waits for connections from LAs or requests from clients.

Figure 2.3: Initialization of a DIET system [BOLZE and al., 06].

In step (2), an LA is launched and registers itself with the MA. At this step of system initializa-
tion, two kinds of components can connect to the LA: a SeD (3), which manages some computational
resources, or another LA (4), to add a hierarchical level in this branch. When the SeD registers
to its parent LA, it submits a list of the services it o�ers. The agent then reports the new service
o�ering through its parent agent until the MA. If the service was previously unavailable along that
branch of the hierarchy the local and the master agents update their records. Finally, clients can
access the registered service by contacting the MA (5) to get a reference to the best SeD avail-
able.� [BOLZE and al., 06]

2.5 Solving a problem

�This section will present the algorithm of DIET for selecting a server for the computation among
those available. We assume that the architecture described in Section 2.2 includes several servers
able to solve the same problem. This decision is made in six steps.

• The MA propagates the client request through its sub-trees down to the capable servers;
actually, the agents only forward the request on those sub-trees o�ering the service.

• Each addressed server will send its performance-related information for processing this request
to its �parent� (an LA).

• Each LA that receives one or more positive responses from its children sorts the servers and
forwards the best responses to the MA through the hierarchy.

16

2.5. SOLVING A PROBLEM

• Once the MA has collected all the responses from its children, it chooses a pool of fast servers
and sends their references to the client.

• When the client receives the reference of best SeD from his MA, he contacts the SeD directly
for submitting the request.

• Once the computation is �nished, the SeD returns the result to the client.� [BOLZE and al., 06]

Summary

In this chapter we have seen the reason why a single agent system can make problems and how this
problem has been solved in DIET. We have seen the main architecture of DIET, the parts of the
master agent, local agent, the client and the SeD and the interaction of these components. We have
seen the initializing procedure to start a DIET instance and what's happen when a request is sent.

17

Chapter 3

The scheduler

Grid applications can be sequential, parallel or distributed and each one of them can generate
resource-intensive requests. These applications are simultaneously executed on the grid and have to
share resources. Meanwhile, these applications are trying to force the performance potential of the
grid to speed up their own execution. That is why scheduling is crucial for high performance. The
performance of a system cannot automatically be associated with high system throughput or any
other throughput, because performance is a generic word and requires a context for an adequate
de�nition. We will discuss the meaning of performance in Chapter 4.

We will brie�y introduce the mechanism of scheduling, the di�erent approaches to scheduling
requests in a grid and we will see how scheduling is used in DIET.

3.1 What scheduling means

The adequate scheduling of requests is crucial for high performance grid architectures because it
allows an optimization of the job execution and a load balancing for the di�erent servers. For
Francine Berman [BERMAN, 99] a high-performance scheduler consists of the following activities:

1. Select a set of resources capable of treating the application requests.

2. Assign application task(s) to compute resources.

3. Distribute data or co-locate data and computation.

4. Order tasks on computation resources.

5. Order communication between tasks.

In the literature, item 1 is often called resource location, resource selection or resource discovery.
Item 2 is often called mapping, partitioning or placement. Additionally, grid computing allows dis-
tribution of problems over many servers, but sometimes some dependency between requests persists

18

3.1. WHAT SCHEDULING MEANS

by splitting a problem into multiple requests. That is why it can be necessary1to perform item 3.
The scheduler must determine a performance-e�cient distribution or decomposition of data

So starting from these �ve steps, a scheduling model of four components is proposed in the
article [BERMAN, 99]:

Figure 3.1: The components of the scheduling model

1. The scheduling policy is a set of rules for producing schedules. These rules describe which
set of resources has to be chosen to achieve the performance goal. Simple examples of such
policies are �rst come, �rst served, a preemptive policy, a fair queuing policy, a load balancing
policy, etc. A concrete example of such a policy is DIET's scheduling and is explained in
Section 3.3.

2. The program model abstracts the set of programs to be scheduled.

3. The performance model is used to evaluate the performance potential of the candidate
schedule by abstracting the behavior of the program on the underlying system.

4. The performance measure describes the performance activity that must be optimized by
the performance model.

�Schedulers employ predictive models to evaluate the performance of the application on the un-
derlying system, and use this information to determine an assignment of tasks, communication,

1But this step can be needed for many more situations than for the case above. For example, for a serial execution,
if the job is not going to be run where the data are located, the data will have to be moved

19

3.2. TYPOLOGIES

and data to resources, with the goal of leveraging the performance potential of the target plat-
form.� [BERMAN, 99]. Only a perfect interaction of these components enables high performance
scheduling. An error in one of these elements will often slow down or even bring down the whole
grid system.

The performance model, program model and performance measure are explained in Chapter 4
because they are mainly important for the performance evaluation.

3.2 Typologies

We can classify schedulers by using one of the following three criteria. The �rst criterion di�eren-
tiates the schedulers by their performance goal (the scheduling shall optimize which component of
the system?). The second criterion distinguishes centralized and distributed scheduling. The third
criterion distinguishes schedulers by their approach to treating incoming requests. The design of
a performance evaluation approach may be in�uenced by the type of scheduler. For example, the
needed information for scheduling may change depending on what scheduler type is present. And
this again may modify the performance evaluation.

Criterion 1: The di�erent performance goals

A scheduler is used to optimize the performance of the grid system. Nevertheless the performance is
always evaluated on a speci�c component of the grid. So each scheduler will optimize the scheduling
for the grid element it is responsible for. This is the scheduler's performance goal. Di�erent
performance goals are pointed out here:

• The �rst performance goal is to promote the performance of the system. These schedulers are
called job schedulers (high-throughput schedulers) and they optimize the job throughput
of the system. As more jobs are executed by the system in a unit of time, system performance
is improved.

• The next performance goal is achieved at resources: For example, Resource schedulers will try
to ensure fair access to resources, that is, that all requests are satis�ed. In another example,
the resource scheduler will also try to optimize the resource utilization (the provided resources
will be used to the maximum).

• Finally, the third performance goal is to achieve performance on individual applications: The
application schedulers (high-performance schedulers) promote the performance of individ-
ual applications by optimizing performance measures like minimal execution time, resolution,
speedup, or other application-centric cost measures.

The �rst and second scheduler types will promote the performance of the system above the per-
formance of individual applications. These goals may con�ict with the goal of the third type of
scheduler. An example is using a high-throughput scheduler. It prefers smaller jobs and the bigger

20

3.2. TYPOLOGIES

jobs will never be executed. The job throughput is quite good, but the performance of the applica-
tion which sends the bigger jobs is very low.

Criterion 2: Centralized and distributed scheduling

Two major types of scheduling are used in grids when talking about the set of information that
the schedulers can access. The �rst one is centralized scheduling and the second one is distributed
scheduling.

• Centralized job scheduling
There is one central point in the architecture where information is collected and where the
scheduling is performed. The scheduler has an overview of the whole virtual organization.

• Distributed job scheduling
It can be advantageous to distribute the work of determining the appropriate schedule for a
workload across the computational platform. Every agent includes a scheduler and decides
for his subset of servers which one should be used. The work load is not concentrated on one
single agent. This approach allows an application with high e�cacy and scalability.

Criterion 3: Online job and Window-based scheduling

The incoming requests can either be scheduled by an online job scheduler or by a window-based
scheduler.

In an online job scheduling approach each task is scheduled directly and there are no request
queues at the MAs or LAs. The requests are scheduled as quickly as possible upon their arrival,
which implies a very low scheduling latency. But on the other hand, it is possible to have a high
load on servers. The cause is a long request queue on the SeD resulting in poor load-balance.

The on-line scheduling limits the scheduler's ability to adapt the schedule decisions and, under
high-load conditions, this leads to scheduling too far in the future. In two cases this becomes a
problem:

• There is no control over the number of jobs ful�lled. If a server suddenly becomes highly
loaded, the requests already delivered to that server can not be rescheduled.

• Once the tasks are scheduled, the stored data needed for the queued tasks could be deleted
by another process from the server's memory and disk. In this case it would be necessary to
ask another server and this implies more work load on both servers.

If multiple tasks are scheduled in a short time interval, they can be scheduled on a server before
the �rst one starts, thus introducing a lag in available data. The nonexistence of a history of
schedules on agent level contributes to this low reactivity as well.

A third disadvantage is the impossibility of reordering the requests (i.e. by priority, a�nity or
by data requirements). For example there is no way to prioritize paying users.

21

3.3. SCHEDULING IN DIET

Windows-based scheduling allows the agents to store multiple requests. In this way we
achieve request �ow control and task assignment re-ordering. For example, the re-ordering can be
used to allow fairness to users (one of the concerns of DIET because it is a multi-user system), to
accommodate inter-task and data dependencies, and to avoid the co-scheduling of multiple tasks
on the same resource when the requests arrive nearly simultaneously at the scheduler. Figure 3.2
shows such a windows-based scheduling approach at the master agent and SeD level.

Figure 3.2: DIET extensions for request �ow control by window-based schedul-
ing [CARON and al, 05].

3.3 Scheduling in DIET

Most of the following information is extracted from the DIET User's Manual and the articles
[DAIL and al., 06] and [SU, 05].

This section will explain the DIET scheduling approach. At this time, DIET's default scheduler
is an application scheduler with focus on minimal execution time for requests. It is a distributed
scheduling and DIET supports online job scheduling as well as windows-based scheduling (the second
scheduling type is only available on explicit demand).

So this section will explain the default scheduling approach in DIET. This section is widely
inspired by the DIET User's Manual [BOLZE and al., 06] and for the extension of DIET by the ar-
ticle [DAIL and al., 06]. When a task is submitted to the DIET system for processing, the following
routine will start:

1. As we have seen in the general routine in paragraph 3.1 item 1 consists in the selection of SeDs
that o�er the service. And as we have seen in the Chapter 2, when DIET SeDs start-up and
register with their parent, they specify which services they are able to treat. This information

22

3.3. SCHEDULING IN DIET

is promoted in the hierarchy up to the MA. In this way an agent is aware of the o�ered services
of each sub-tree.

When a request arrives at the client's master agent, the request will be forwarded to the sub-
trees o�ering the service. In this way the request will be forwarded down to the SeD. With
this approach it is not necessary to know if a child can treat the problem, it su�ces to know
the service is available via the child.

2. Each connected SeD can provide some information about itself. This set of status information
is explained in detail in Section 4. This information can have a signi�cant size that can cause
unwanted network load. To avoid this problem, the bulkier detailed data generally remains at
the server level in DIET and only synthesized information is passed up to the server's parent.
The information is gathered by the SeD and passed up the tree only upon request (unlike
NetSolve [ARNOLD and al, 01]), an approach that implies less overhead for the system in
some conditions.

3. Upon receiving server responses from its children, the agent performs a local scheduling op-
eration called server response aggregation. E�ectively, candidate SeDs are identi�ed through
a distributed scheduling algorithm based on pair-wise comparisons between the status in-
formation of each SeD. The agent sorts these responses in a manner that optimizes certain
performance criteria. The end result of the agent's aggregation phase is a list of server re-
sponses, sorted according to the aggregation method in e�ect. Until the responses reach the
head of the hierarchy, the list is passed to the agent's parent agent to be aggregated with
other lists.

4. The agent transmits the address of the SeD to the client.

Additionally, some extensions are implemented in the DIET scheduling policy. They are not
used by default and we note them here for the sake of completeness.

1. In default scheduling the SeD will start to compute immediately when it receives the request.
This resource sharing can be very harmful for resource-intensive applications. That is why
the number of concurrent jobs at the SeD-level can be limited. In a simple �rst approach we
allow SeD-level queues. They are now implemented in DIET and are illustrated in Figure 3.2.

2. As we have already mentioned in Section 3.2, it is now possible to use window-based scheduling.
The MA stalls requests and stores them in a queue. At the appropriate time, the MA will
schedule them as a batch.

3. These extensions have parameters that have an important impact on scheduling. That is why
the most of these parameters 2 are con�gurable by the DIET service developer.

2Parameters like the allowed number of jobs that can run simultaneously on the SeD, the number of requests
scheduled in a window and the time interval spent between windows

23

3.4. SCHEDULER'S NEEDS

3.4 Scheduler's needs

Which performance data is needed by the scheduler? As every scheduler has its own objectives
(low response time, high job throughput, . . .) an unique answer will not su�ce: context-sensitive
performance evaluations must be provided.

As DIET is a system intended to support many kinds of applications and as the user has the
opportunity to create his own scheduler via the use of plug-ins (explained in Section 3.6), it is
important to take into account these complex needs.
We have seen that the data used by the scheduler depends on the performance goal. So the Holy
Grail would be to know the corresponding performance already for each server before the exe-
cution has started. This capability would make it possible to develop a schedule that always
chooses the most accurate server. We call this performance foresight for a speci�c application an
application-speci�c performance prediction. In general, performance predictions are based
on the assumption that observation of past performance implies that future performance levels will
be similar. Nevertheless these predictions are not always possible to produce, so some other per-
formance evaluation techniques must be available. Performance evaluation is described in detail in
Chapter 4.

3.5 Using resource information services in DIET scheduling

It is now important to understand the di�erence between the scheduling operation itself and the
information used by the scheduler. Scheduling depends on performance information provided by
the system. Not only SeD status information could facilitate the decision making during schedul-
ing, but also inter-architecture data like network bandwidth between SeDs. The Network Weather
Service (NWS) [WOLSKI and al, 99] and the Fast Agent's System Timer (FAST) [QUINSON, 02]
can provide this information. DIET implements functions to access these two modules.

The DIET scheduling policy uses the di�erent types of SeD-provided data. Each data type
results in one comparison level with an appropriate aggregation function. The di�erent levels have
a special ordered sequence. At �rst, level one will be used. If the data type is not available for
either SeD, or the comparison shows that the SeDs are of equal performance, the next lower level
will be compared.
This approach prioritizes SeDs that have this �rst data type. In this way it ensures that a scheduling
decision can always be made. It is not possible to compare two di�erent data types. The following
sequence will explain the di�erent levels and represents the behavior of DIET:.

1. FAST: SeDs compiled and properly con�gured with the performance evaluation module
FAST [QUINSON, 02] are able to provide application-speci�c performance prediction. FAST's
data consist in a prediction of how long the computation of the special task will take on the
speci�c SeD. The aggregation function is a simple minimize function of this value.

24

3.6. PLUG-IN SCHEDULER

2. NWS: SeDs compiled and properly con�gured with NWS are capable of providing resource
performance forecasting. The forecasting consists amongst others3 of a value indicating the
fraction of CPU available for new processes in percent (freeCPU) and a value indicating the
amount of free memory in megabytes (freeMemory). These two values are �rst weighted
(freeCPU3 and freeMemory0.5) and then combined in the following formula to give more
basic performance estimation:

PerformancebyNWSdata =
1

freeCPU3 ∗ freeMemory0.5
(3.5.1)

As we can see the weight given to freeCPU is higher than the weight given to freeMemory.
The aggregation function is the maximization of this estimation.

3. Round-robin: If neither FAST nor NWS provide performance data, a round-robin approach
will be used to achieve probabilistic load balance. When a server is assigned jobs for execution
it records the time for the last job as a time stamp. On demand the SeD can now compute
the time elapsed since last execution. The aggregation function here is the longest elapsed
time.

4. Random: Sometimes the SeD is unable to store the last time, the DIET scheduler will chose
randomly between two otherwise equivalent SeD performance estimations.

3.6 Plug-in scheduler

The most di�cult challenge for scheduling is to determine a good policy. In the example of the
default scheduling approach with NWS data, we already see two problems showing that the ag-
gregation function is not always applicable. By using the formula described in Section 3.5, the
scheduler will always prefer SeDs with high freeCPU and high freeMemory. Other parameters that
may in�uence the execution time like the network, disk speed or CPU frequency are< not taken
into account. Additionally, the weights attributed to freeCPU and freeMemory do not re�ect their
importance in every application. Some applications are more memory demanding and some others
much more CPU demanding. As [BERMAN, 99] indicates, �it may not be impossible to obtain
optimal performance for multiple applications simultaneously�.

The plug-in scheduling facilities are designed to allow DIET service developers to de�ne
application-speci�c performance measures and to implement corresponding scheduling strategies. In
this way the plugin permits maintenance of the distributed scheduling design. It enables an exten-
sible performance measurement system and tunable comparison/aggregation routines for scheduling.

One of the performance measurement systems is the new CoRI management system for resource
information (see Chapter 5). Other systems like FAST or NWS can be used too.
The plug-in in conjunction with these measurement systems enables various selection methods for

3Additionally it is possible to receive the network capacity between two entities. But this information is not yet
used in the default scheduling of DIET.

25

3.6. PLUG-IN SCHEDULER

using basic resource availability, processor speed, memory, database contention, or any other mea-
surable information as criteria for the scheduling. The aggregation routines can be modi�ed or
rewritten to allow an optimal scheduling.

The plug-in includes a scheduler API, di�erent metrics (last execution time, CPU load and free
memory capacity via FAST, . . .), and di�erent aggregation functions (the maximum and minimum
of a criterion value,. . .).

Summary

In this chapter we have seen a brief introduction to scheduling in DIET, some of its importance and
some of its problems. Also we have seen the online distributed application scheduling implemented
in DIET, its actual order of comparison levels and its extension, the plug-in scheduler.

26

Chapter 4

Performance evaluation

The software and hardware resources of the underlying system may exhibit heterogeneous perfor-
mance characteristics, resources may be shared by other users, and networks, computers and data
may exist in distinct administrative domains. Appropriated scheduling is only possible if exact
information about the state of all machines is provided. That is why a good performance prediction
tool is crucial to take the full advantage of a grid system.
We will compare the scheduler's need for status information with the set of information actually
provided by the tools used in DIET. Finally, we will cite the reasons for the new tool CoRI in DIET
.

4.1 What performance means

Until now in this dissertation, the term �performance� was not precisely de�ned. We know that
performance is a non-functional requirement of the majority of systems in general and especially in
grid systems [BERMAN, 99]. The term is used in many domains, and we will de�ne it only in the
grid computing context.

Nevertheless we will take inspiration from the human management domain
[SONNENTAG and al, 02], where performance is a critical requirement as well. The parallels be-
tween both domains seem very close. For example, managers have to schedule the jobs to their
employees in the same way as the MA must schedule the tasks to the SeDs. And in both systems
this scheduling must achieve high performance. In the human resource �eld, only actions which can
be scaled, i.e., measured, are considered to constitute performance ([CAMPBELL and al, 04]). In
grid computing, we can �nd the same approach ([JAIN, 91] and [BERMAN, 99]). And in order to
allow measurements, we have to associate the performance with criteria. The latter are evaluated
in metrics that will measure performance in a concrete manner. Here we will list commonly used
performance metrics [JAIN, 91] to give an idea what performance can mean. We mention here that
the de�nitions of these metrics are only one of many possibilities.

• The response time is de�ned as interval between a user's request and the system response.
This de�nition is simplistic because request and response are not instantaneous. Typing the

27

4.2. WHICH ELEMENTS MAY AFFECT PERFORMANCE?

request and outputting the answer take time. Di�erent solutions are possible by de�ning the
beginning and the end of the interval to measure, but we will not detail this de�nition here.

either the interval or as the interval between

• The reaction time is measured as the time between submission of a request and the beginning
of its execution by the system.

• The rate (requests per unit of time) at which the requests can be serviced by the system is
called throughput. For example, the Millions of Instructions Per Second (MIPS), or Millions
of Floating-Point Operations Per Second (MFLOPS) measure the CPU throughput.

• The utilization of a resource is de�ned as the fraction of time the resource is busy servicing
requests. It can be calculated by the ratio of busy time to total elapsed time over a given
period.

• The probability of errors or the mean time between errors de�nes the reliability of a system.

• The availability of a system is de�ned as the fraction of the time the system is available to
service users' requests.

4.2 Which elements may a�ect performance?

If we want to measure the performance it would be necessary to specify which elements in the system
may have an in�uence on the performance. Or, we can ask in the other sense as well, which are the
system components that we want to evaluate? Hence we will list some of these system elements.
Note that this listing is not necessary exhaustive.

1. The �rst element is the workload. Workloads are the requests submitted by the users to the
system (for example the network workload would consist amongst others of the transmission
of �les over the network).

The performance can be in�uenced by system and workload characteristics. These character-
istics are called parameters.
For example, system parameters may include CPU operation number (for CPU allocation),
request size (for network allocation), or working set size1 (for memory allocation).

Workload parameters may include the number of users (this indicates the number of active
application entities that are concurrently engaged in the system), priority, request arrival rate
and distribution (this indicates the number of requests generated per unit time)

2. Since grids are built in a heterogeneous environment, the performances of the di�erent ma-
chines will be in�uenced by hardware and software elements.

We will list here some important hardware characteristics, but this list is not necessary
exhaustive. Because every application and every machine is di�erent from each other, it is

1The working set size is the set of virtual memory pages currently used by the process.

28

4.2. WHICH ELEMENTS MAY AFFECT PERFORMANCE?

very complex to take into account each element. Remember that each of these elements might
be a metric for performance evaluation, but this will be discussed in Section 4.3.4. We will
group them into categories for a better overview.

Central Processing Unit (CPU) Di�erent CPU characteristics can in�uence the perfor-
mance of the CPU:

• The CPU frequency,

• the instruction set supported by the CPU,

• the number of CPUs,

• the cache level 1 (called cache L1, small and fast memory near the CPU),

• the cache level 2 (called cache L2, for older processors: the external memory situated on
a separated chip near the CPU; for newer processors: a second internal memory like L1),

• the cache level 3 (called cache L3, only available for newer CPU generations: previously
called cache L2, the external memory situated on a separated chip near the CPU),

• the frequency of the cache,

• the frequency and theoretical bandwidth of the front side bus (FSB, bus between CPU
and RAM, BIOS, hard disk,. . .), and of the back side bus (bus between CPU and cache
L2)

Memory (RAM)

• The RAM frequency,

• the RAM type (DRAM (dynamic RAM), SRAM (static RAM), DDRAM (Double Data
Random Access Memory), FPM (Fast Page Mode), ECC (Error Correcting Code) and
its bandwidth (maximal transfer from RAM to the L2-cache or to the L3-Cache), EDO
(Extended Data Output), SDRAM (Synchronous Dynamic RAM)),

• the RAM capacity.

Virtual memory (SWAP)

• The SWAP size

• The SWAP's storage type (hard disk, �ash, . . .)

Disk

• The maximal and actual disk rotation,

• the number of devices,

• the number of read-write heads of each arm

29

4.2. WHICH ELEMENTS MAY AFFECT PERFORMANCE?

• the cache size,

• the technology of read and write (GCR (Group Coded Recording), MFM (Modi�ed Fre-
quency Modulation) , RLL (Run Length Limited), PRML (Partial Response/Maximum
Likelyhood), EPRML (Extended Partial Response/Maximum Likelyhood),. . .)

• the disk size,

• the number of platters,

• bus types (for example ATA (IDE, EIDE), Serial ATA, SCSI, SAS, FireWire (aka IEEE
1394), USB, Fiber Channel,. . .),

• the RAID version,

• characteristics of other peripheral devices (CD-ROM, DVD, streamer, NFS,. . .).

Network

• The theoretical bandwidth (for example for Ethernet 10, 100, 1000, or 10000 Mbit/s)

• the number of hops between the two edges points.

• the protocol used

• many more,. . .

Additionally to this hardware aspect, the software can in�uence the performance too. The
simple di�erence of the version can have several important impacts on the metrics like the
response time, the reliability of the system, even the power consumption or other criteria. In
addition to versions, one program could be faster than another one. Of course, the operating
system can have an e�ect on the performance too. There are a lot of other reasons why soft-
ware can a�ect performance, but our main concern in this dissertation will be the hardware
aspect.

3. It is important to take into account the di�erent system components, for example the servers,
the agents, the network, the databases,. . .

4. Even the previous scheduling can have an e�ect on the performance. Workloads can be
placed on the SeD already and so the second arriving workload has to share the resource
capacities with the other scheduled workloads.

5. If application data is present at the SeD, it is not necessary to request them via the network.
Further, the simple fact that the data is in the memory could increase performance because
the access is faster and easier than if the data would be on disk.

6. other elements can in�uence the performance. As the cited elements are primarily concern
of performance in the meaning of reaction time and response time, we have to remember that
it is extremely di�cult to cite every element of every kind of performance.

30

4.3. THE GRID RESOURCE INFORMATION SERVICE

Furthermore, we can distinguish between static and dynamic elements that could a�ect the
performance. Static elements need to be evaluated only once, and dynamic information must be
evaluated constantly. Hence prediction performance must be adjusted constantly too. Nevertheless
we have to take care of declaring elements as constant because new technologies could make them
dynamic. For example the number of CPUs seems to be static, but in reality some systems support
the dynamic adding or removing of CPUs. Another example is the the disk rotation: it is possible
to decrease the speed for reducing noise and power consumption.

So, detecting the machine with the best performance is very di�cult, because a lot of parameters
a�ect the performance. Later in this chapter we will discuss the utility of all these characteristics.
Therefore, di�erent approaches for performance evaluation are elaborated and they are explained
in the next section.

4.3 The Grid Resource Information Service

In the context of grid systems, information services are any kind of services that returns informa-
tion about the status of the system. For example, one application-speci�c performance prediction
service predicts the computation time for a request on a SeD. Another information service is the
resource performance forecasting service that gives some performance forecasts about resources. In
this chapter we will examine the di�erent levels of information services in a top-down approach.
Firstly, we will brie�y introduce the di�erent levels and their interconnections, and afterwards we
will discuss each level in detail.

We have seen in Chapter 3 that performance prediction is the best information for the system
for optimizing the scheduling. But in the majority of cases this prediction needs, amongst oth-
ers detailed knowledge of the service behavior. Additionally, the prediction would need detailed
information about SeD's resources. This information depends on two factors:

1. The status of the architecture: The workload by other requests must be in included in the
prediction. If the scheduler knows that �ve other requests are executed on the SeD, it must
take into consideration this fact for its prediction.

2. But the �rst point has limits because we are on a grid and nevertheless one of the main
characteristics is that it is a concurrent environment. This drives us to a major problem
namely the impossibility to know how much the SeD is really occupied. To counteract this
problem we introduce here another important component of a grid, namely the resource
performance forecasting.

So the prediction tool gets resource performance forecasting that uses numerical models to generate
forecasts. We will introduce their principle and some tools in Section 4.3.2.

But the resource performance forecasting needs dynamic system availability data about the SeD,
the network and any other components that are present in the architecture. Therefore they use
resource monitors that record di�erent measurements data of di�erent resources. These resource
monitors are explained in Section 4.3.3.

31

4.3. THE GRID RESOURCE INFORMATION SERVICE

These measurements are achieved by measurement services that are placed and executed
nearby the components. They are explained in Section 4.3.4.

So, each one of the cited services above represents one data level of the performance eval-
uation. Measurement service provides elementary information, monitors combined and historical
information, predictions services provide complex estimations of resource or application.

Figure 4.1 shows an example of architecture that shows the di�erent elements cited above. In
this example, the application-speci�c performance predictions at the SeD depend on three di�erent
resources. Therefore each resource is linked to one sensor and one monitor. As we can see for the
resource monitor C, it is possible that multiple resource performance forecasting tools simultaneously
access the resource monitor.

Figure 4.1: Performance prediction This �gure shows an example of a performance prediction
model with its four levels, namely the application- speci�c performance prediction, the resource
performance forecasting, the resource monitor, and the sensor.

Further it is possible that the scheduler avoids the performance prediction tool and that it
asks the resource monitor directly. So the presented architecture is only one model that contains
the di�erent components of performance evaluation, and not all developed tools make the clear
distinction between these levels, or implement all levels. It is even possible to use a monitor above
performance predictions, in this way this monitor will collect predictions coming from di�erent
performance prediction tools.

Nevertheless it is not trivial to get performance prediction services, because many levels must
be used for providing an exact prediction to the scheduler. We can remark that the interconnection
and dependency to the underlying levels is very high. We will now analyze the di�erent elements.

32

4.3. THE GRID RESOURCE INFORMATION SERVICE

4.3.1 Performance prediction

�Knowledge that does not include the future is not knowledge at all.�

Hans-Peter Dürr (*1929), German physicist,
1987 Alternative Nobel Prize.

Performance prediction is widely used in grids and many approaches are elaborated in this
domain. We will not entering into the details here, because the approaches can be very di�erent
and this is not the main topic of this dissertation. We will only introduce the approaches that
are important for our next step. As we have already seen in Chapter 3, the scheduling consists of
four elements, namely the scheduling policy, the program model, the performance model and the
performance prediction model. The �rst element, i.e. the scheduling policy, has been explained in
Chapter 3. The three other elements are used for the performance prediction of application,

Program models

When problems are too big to be computed on one machine, they will be divided into small tasks.
As a task can still have dependencies on other tasks (for example one task needs the result of
another), the parallelism is not perfect. So these communicating tasks have to be modelled for
assuring high-performance and scheduling. Several approaches are elaborated and some of them
are cited in the article [BERMAN, 99]. Nevertheless, we mentioned this component for the sake of
completeness, but shall go no further, as this is another branch of research.

Performance model

The goal of performance modelling is to get a better understanding of a computer system's perfor-
mance on various applications. One use of this model can be to create a performance prediction
for each machine and then to use this knowledge to evaluate the performance potential of a given
schedule.

To generate such a performance model we can use di�erent measurement and analysis techniques
that we will describe later in this section. In general, it provides an abstraction of the behaviour
of the application conditioned by the underlying system, and this abstraction will be described in
a compact formula.

Once this model is described, it can be used to generate a performance prediction for an appli-
cation. Therefore, we only have to specify resources, capabilities (e.g., maximum �oating point rate
or available bandwidth), and problem parameters.

Firstly, we will introduce some of the many approaches that are elaborated for creating perfor-
mance models. Therefore each approach is described by three aspects:

• who supplies the performance model (the system, the programmer or a combination of both),

• its form,

• and its parameterization (static and dynamic information)

33

4.3. THE GRID RESOURCE INFORMATION SERVICE

We shall will describe some of the approaches in very general terms, because these techniques
are very mathematical and our goal is not to discuss performance models, but only to introduce
them so as to understand their needs better.

So, on one end of the spectrum, there are scheduler-derived performance models, which
require little intervention from the model's user. Some applications use coordination language and
derives in this way �skeleton� performance models from programs. Others use the last program
iteration for building a program dependency graphs or simple benchmarks. As a �rst example we
can mention FAST that will be explained in Section 4.3.1.
Other application-speci�c performance prediction tools are SPP(X) [AU and al, 96],
MARS [GEHRINF and al., 96], Dome [ARABE and al, 95], . . .

At the other end of the spectrum are user-derived performance models. Often the pro-
gram assumes that the performance model � and sometimes even the resulting schedule � will be
determined by the user. Then, the models are parameterized by static and dynamic information
into a prediction of application performance. For a concrete example, we refer to the AppLeS
project [BERMAN and al., 97], and the I-SOFT scheduler [FOSTER and al, 96].

It is worth mentioning that some approaches combine both programmer-provided and
scheduler-provided performance components. These approaches require both programmer
and scheduler information.

To summarise, the di�erent models of the di�erent approaches are built in a certain manner, but
then they will be parameterized by using static and dynamic information. For more information
about prediction model we refer to the article [BAILEY and al, 05].

Performance prediction characteristics

What should the qualities of a performance prediction be? In general (according to [BERMAN, 99]),
performance prediction models should have three main characteristics:

• Time-speci�c The performance delivered by the system resources vary over time in the grid,
hence the performance predictions must also vary over time and should be timeframe-speci�c.
This implies that the predictions have a limited life.

• This calibration is done if the prediction utilizes dynamic information to represent varia-
tions in performance. Since concurrent access to resources is common in computational grids,
application performance could vary enormously over time and per resource. Dynamic param-
eters are utilized to re�ect the evolving system state of the grid, to help models to perceive
Dynamic information about performance variations.

• Since the heterogeneity of its components is one of the major characteristic of the grid, the
scheduling must be able to adapt its behaviour to a wide spectrum of potential compu-
tational environments. Hence the performance prediction models must be able to include
distinct execution environments in their evaluation.

34

4.3. THE GRID RESOURCE INFORMATION SERVICE

The performance prediction tool FAST

This section deals with FAST [QUINSON, 02], a performance prediction module that can be used
in a grid environment, and particularly in DIET. Firstly we will show what kind of information
FAST can provide to the user, then we will explain the principles of its prediction, show its archi-
tecture, and �nally its dependencies on other software. This section is based on [CARON and al, 05].

FAST can provide SeDs with improved performance prediction capability. In fact, FAST provides
the following information to the user (the �user� is the scheduler in our context):

• a forecast for the data transfer time between two FAST-enabled machines,

• a forecast for the time and space needed to solve a problem with given problem parameters
and given set of computational resources.

• the combination of these two quantities,

• other lower level system availabilities (the free CPU, the free memory, the number of CPUs,
the latency and bandwidth of any TCP link). This information is not used as performance
prediction, but constitutes a lower data level included in the FAST tool.

The prediction is based on two di�erent data sources:

• Static data acquisition is used to predict the time and space requirements of the routine.
Several approaches are used, depending on the type of routine.

1. Routines that can be measured easily (numerical algebra routines whose performance
is not data-dependent and where a clear relationship exists between problem size and
performance) are match-marked in time and space complexity. The resulting data is
�ted by polynomial regression and is stored in a database. These operations can be time
consuming but they are executed only once when the routines are registered at the agent.

2. All the routines cannot be evaluated with this approach. Indeed, some can be too di�-
cult to evaluate experimentally. They use concurrent execution of functions2 and for this
reason; too many parameters have to be taken into account. In this case, FAST allows
the developer to specify the computation time by a complex expression that aggregates
the computation time of other routines (obtained with the �rst method) to the commu-
nication time of the parallel version of the algorithm given by a careful evaluation of the
algorithms.

3. A �nal approach makes some problems for FAST: the kind of routines whose performance
depends on characteristics which are hard to extract (like the shape of the matrices
involved or the values of their elements). The processing of such routines is not yet
solved in FAST and will need further work.

2For example the SCALAPACK library and the function pdgemm

35

4.3. THE GRID RESOURCE INFORMATION SERVICE

• The dynamic data acquisition is the second module and can acquire system performance
capabilities at runtime. It allows FAST to take into account the actual work load of the
resources.

The use of these two data types enables FAST to provide accurate forecasting to the client ap-
plication. Figure 4.2 gives an overview of the FAST architecture, which is composed of two main
parts. On the bottom of the �gure, the benchmarking program is used for the routines of the
�rst type. Then, on top, the �gure shows the FAST library that is divided in the two sub-modules
already explained before. FAST uses two types of external tools principally (in grey): the system

Figure 4.2: FAST's architecture [CARON and al, 05]

monitoring tool (NWS) is used for the dynamic data acquisition, and the distributed database that
stores the sets of static data computed at the installation phase about routine's needs.

So the dependent programs are:

• NWS the Network Weather Service

• GSL the GNU Scienti�c Library

36

4.3. THE GRID RESOURCE INFORMATION SERVICE

• OpenLDAP an implementation of the Lightweight Directory Access Protocol that allows the
storage of the static data.

Although the primary targeted application class consists of sequential tasks, this approach
has been successfully extended to address parallel routines as well, as explained in more details
in [CARON and al, 02]. One of the advantages of FAST is that since performances prediction is
performed only in the DIET SeD, no modi�cation is needed to the client code. A second advantage
is that monitoring new resources like free disk space or non-TCP links should be relatively easy in
the FAST framework because the API is quite easy to use.

For more details about FAST, the reader can visit the FAST Reference Manual3.

4.3.2 Resource performance forecasting service

Resource performance forecasting services provide performance prediction of resources. In contrast
to application-speci�c performance prediction, they are independent on the applications that run
on the system. For this reason these services are often4 used in performance prediction services for
calibrating their predictions. So, there is a high dependency of the application-speci�c performance
prediction services on resource performance forecasting services.

NWS

In this section we will introduce the forecasting method of NWS. The Network Weather Service
(NWS) [WOLSKI and al, 99] is a distributed system that periodically monitors and dynamically
forecasts performance of various networks and computational resources. It is used by many grid
projects like AppLeS [BERMAN and al., 97], Globus [GLOBUS], NetSolve [ARNOLD and al, 01],
Ninf [NAKADA and al, 99] and DIET.

Firstly, we will introduce the architecture of the tool, and then explain the principle of resource
forecasts in NWS.

NWS is built upon the two lower information service levels, namely a monitor service collect-
ing all information from sensors, and the sensors extracting the raw performance data from the
component. That is why we will repeat NWS in the sections 4.3.3 and 4.3.4.

By using these information services that capture the current state of each platform, NWS fore-
casts the evolution of the monitored system in short-term and characterizes the performance deliv-
erable at the application level dynamically.

The current NWS forecaster needs two elements for generating forecasts of future measurement
values.

1. The �rst element consists of pairs of time stamps and measurements that are ordered by time,
called time series,

3http://graal.ens-lyon.fr/FAST/docs
4indeed, some approaches (for example [GAUTAMA and al., 00] do not take into account the environment, that

is why they are inadequate for the grid computing

37

4.3. THE GRID RESOURCE INFORMATION SERVICE

2. The second element is a set of forecasting models that can �predict� the measurement based
on the measurements that come before it in the series. They consist of statistic functions like
average or median.

So, this set is now applied to the pairs, and then the forecasting technique chooses the most accurate
model. Nevertheless, this technique does not incorporate any modelling information speci�c to a
particular series. As each model will produce a prediction, the most accurate model is the one that
has the lowest cumulative error on its prediction.

The advantage of this adaptive approach is that it is ultimately non-parametric and, as such,
can be applied to any time series presented to the forecaster. While the individual forecasting meth-
ods themselves may require speci�c parameters, di�erent �xed settings are included for particular
methods with the assurance that the most accurate parameterization will be chosen.

Other forecasting methods

Other researches were made about resource forecasting. Some methods are listed here:

• Semi-Nonparametric Time Series Analysis (SNP) [GALLANT and al., 92],

• automated Box-Jenkins5,

• wavelet-based models [OGDEN, 97].

• The resource prediction system(RPS) [DINDA and al., 99].

4.3.3 Monitoring services

�To measure the performance of a computer system, you need at least two tools - a tool to load
the system (load generator) and a tool to measure the results (monitor)� [JAIN, 91]. Loading the
system can be performed by requests (in this case it would be an online loading) or it can be done by
special programs in order to simulate the load of a machine (called benchmarks). The �rst element
will be explained in Section 4.3.4. The second, namely the monitoring, will be explained in this
section.

In the literature, monitors are not only able to manage the resource information sources
(often called producer [TIERNEY and al., 00], [ANDREOZZI and al, 03]), to store the resource
information coming from the producer and to manage the access to this information by the con-
sumer (in our case the upper levels); they are also responsible for producing performance predictions
of applications and resources (seen in sections 4.3.1 and 4.3.2) and for measuring the system (this
will be seen in Section 4.3.4. But we have implicitly made a distinction of these di�erent function-
alities for a better understanding.

In fact, the measurements are not generated by the monitor, but are collected from a lower level
measuring service, individual sites, �les, programs, web services or other network-enabled services.

5http://www.autobox.com/index.html

38

4.3. THE GRID RESOURCE INFORMATION SERVICE

Furthermore, the monitor can also use other monitors, and a hierarchy of monitors is used to gather
information. This monitoring data can be used to achieve three goals:

1. It is used to determine the source of performance problems (bottlenecks,. . .).

2. The fault detection and recovery mechanisms need the data to determine whether a service is
down.

3. And �nally, it is used for resource capability-aware scheduling, which will tune the system
and/or application performances.

We can see that these systems have di�erent application ranges, so we will now cite the most
important general requirements [TIERNEY and al., 02] for these kinds of applications.

• Low latency. As performance data are time-sensitive information valid for a short time
interval only, their transmission must be done with a low latency.

• High data rate. As the sensors can generate performance data at high rate, the system
should be able to support these operating conditions. Additionally, the sensors could send the
data in bursts, so the system should be able to limit these rates in order to avoid overwhelming
the consumer.

• Minimal measurement overhead. Multiple access to information must not be intrusive or
the intrusiveness should be limited to a minimum.

• Secure. The access to the information should be subject to restrictions. The monitoring
system has to control the access policies imposed by the owner of the data and it must ensure
its own integrity.

• Scalable. Because we are working in a grid environment, the number of resources, services
and application to monitoring, as well the number of consumers can be very high. That is
why the monitoring system has to provide scalable measurement.

Several approaches are made for ensuring these characteristics and we will now analyse the
architecture of NWS as an example.

The NWS monitoring system

The NWS Monitor allows the user access historical performance data of di�erent measured system
components.

Since NWS must be suitable for distributed applications, it seems logical to distribute the
monitoring system as well. On account of this obligation, di�erent NWS component processes are
necessary for monitoring:

1. The persistent state process, called NWS Memory, stores and retrieves measurements from
persistent storage. This mechanism allows a higher robustness because information stored at
the sensor side could be lost on a failure of process memory at the sensor side. Hence a NWS

39

4.3. THE GRID RESOURCE INFORMATION SERVICE

Figure 4.3: A simple example of the NWS architecture with several sensors, one NWS memory and
the NWS name server

memory can be deployed for storing the measurements of the last time-intervals. Indeed, the
measurements are not stored inde�nitely, because they loose their utility progressively. It is
possible to deploy a hierarchy with multiple memories which allows a distributed work load.

2. The name server process, called NWS Name server, implements a directory capability used
to bind process and data names with low-level contact information (e.g. TCP/IP port number,
address pairs). This name server is unique in a NWS hierarchy and every sensor and every
memory of a speci�c hierarchy has to log onto the same nameserver.

3. The sensor process, called NWS Sensor, gathers performance measurements from a speci�ed
resource. It will be explained in the Section 4.3.4 after the introduction to sensors.

4. Finally the forecaster process was already explained in the Section 4.3.2. It produces a
performance prediction during a speci�ed time frame for a speci�ed resource by using the
information stored in the NWS memory.

Figures 4.3 represent the interaction between the di�erent components. In this deployment
sample, multiple sensors for CPU load, network load and memory capacity are subscribed and only
one memory server is used.

Other monitoring services

There are a lot of other monitors, for example:

40

4.3. THE GRID RESOURCE INFORMATION SERVICE

• Ganglia [MASSIE and al., 04] is a scalable distributed monitoring system for high-performance
computing systems such as clusters and grids.

• Nagios6 is a host, service and network monitoring program.

• Survivor7 is a monitoring service that uses a scheduler approach for monitoring. This allows
an easy administration of the di�erent simple characteristic requests.

• REMOS: The REsource MOnitoring System [DEWITT and al., 98] provides network infor-
mation.

• INCA8 is a �exible framework for the automated testing, benchmarking and monitoring of
Grid systems9 that includes automated testing, benchmarking, veri�cation, and monitoring
of service-level agreements at speci�ed intervals. It is part of the globus alliance and it is
used in TeraGrid10. Its architecture consists of a server that is responsible for managing data
collection and making data available to consumers and clients responsible for gathering data
from a resource.

• Argus11 is a system and network monitoring application.

• BixData12 is a cluster management tool that includes monitoring and system administration
features. It monitors services (HTTP, ping, POP3, SMTP), performance, and processes.

• RMI of Legion [CHAPIN and al, 98] the resource management infrastructure deployed in
Legion has similar goals as the grid resource information services in DIET.

• MonALISA A distributed Monitoring Service Architecture [NEWMAN and al, 03].

• MDS [CSAJKOWSKI and al, 01] is a tool for monitoring and discovery systems and is used
in Globus. Amongst other it utilizes Ganglia, Hawkeye13, WS-GRAM14 for collecting infor-
mation about resources.

• R-GMA15 has another approach for grid information services: it makes all the information
appear like one relational database. A producer-consumer approach is used for collecting and
distributing the information.

• JAMM [TIERNEY and al., 00]

6http://www.nagios.org/
7http://www.columbia.edu/acis/dev/projects/survivor/
8http://inca.sdsc.edu/
9http://inca.sdsc.edu/
10http://www.teragrid.org
11http://argus.tcp4me.com/
12http://www.bixdata.com/
13http://www.cs.wisc.edu/condor/hawkeye
14http://globus.org/toolkit/docs/3.2/gram/
15http://www.r-gma.org/

41

4.3. THE GRID RESOURCE INFORMATION SERVICE

• Hawkeye16 Hawkeye is a network monitor.

For more information, the white paper [GERNDT and al., 04] and the article [XUEHAI and al., 03]
list some of these monitoring tools amongst others.

4.3.4 Measurement service

The lowest layer for grid information services is measurement services. They probe resources for
simple or composite metrics. These metrics will be available for the upper levels in form of raw
data. It is up to the higher levels to store, �lter, interpret, analyze, or compare the data.

Nonetheless, building this service is indispensable for the scheduler because without it, the
scheduler would be blind to all activities of the grid. Therefore, some requirements are crucial for
providing a good measurement service.

• The intrusiveness of the measure has to be limited to an acceptable fraction of the available
resources.

• It is important that each resource sensor shares a common de�nition of the metrics. For
example, the consumer would be confused if one sensor transmits the write speed of a hard
disk in bytes and another provides it in megabytes.

• The sensor should be extendable for new grid environments. For example, if until now the
sensor is used only for UNIX-based operating systems, and it should now be used under
Windows XP which does not provide the same basic functions, the sensor should be able to
provide these new functions.

Firstly, we want to introduce some techniques that are developed for extracting information. The
�rst such technique, namely the sensor, is used to manage the data transmission to the monitor and
to manage the measurement conditions (i.e. the frequency measurements are taken). The sensor
does not measure the resource; it is rather like the person who uses a thermometer to measure
the temperature. It uses other techniques, namely the benchmark and the simple request, for
perceiving the data which it will send back to the monitor. Hence, we can see the sensor as a
middleman between the monitor and the measuring instrument. We will now explain in details the
sensor technique and afterwards the benchmark and the simple request.

Sensors

A sensor provides dynamic information about speci�c devices of a speci�c component present in
a system. A device can be any element of the component that can in�uence its performance (cf.
Section 4.2).

A sensor manages the queries which are used to consult the device. These queries consist of
calls of simple request and executions of benchmarks.

Therefore, sensors are deployed at the component's side, often as an autonomous processes.
Furthermore, the capture of the device state and the data delivery can be caused by the monitor,

16http://hawkeye.sourceforge.net/

42

4.3. THE GRID RESOURCE INFORMATION SERVICE

but also by device activity or by an elapsed time period. For example the NWS sensor uses di�erent
basic functions and �xes the rate of polling the device. Furthermore, the sensor can generate events
if dynamic thresholds are reached. For example, if the used memory exceeds a given amount, an
event will be created and sent to the monitor.

Some sensor types:

• Host sensors perform host monitoring tasks, and provide information like CPU load, available
memory, or TCP retransmissions.

• Network sensors perform queries on a network device, for example a router or switch.

• Process sensors observe the process status and generate events when the status changes (for
example, when it starts, dies normally, or dies abnormally).

• Application sensors are embedded in applications and can generate events when static thresh-
olds are reached. For example in DIET, the SeD could generate an event if the number of
incoming requests exceeds a �xed number. Another goal for application sensors can be to
collect information about the application performance, like the execution time or the used
resources that can be used for further performance analyses.

Example: NWS sensors

We will introduce here the NWS Sensors to gain a better understanding of the role of sensors. More
detailed information can be found in the articles [WOLSKI and al, 99] and [CARON and al, 05].

So the role of a NWS sensor is to gather and store time stamp-performance measurement pairs
for a speci�c resource. Each sensor process may provide di�erent performance characteristics of the
resource that it observes.

In NWS, the architecture includes a distributed set of sensors with two types of sensors: net-
work sensors that provide small-message round-trip time, large-message throughput, and TCP
socket connect-disconnect time measurements of any TCP/IP link and host sensors that deliver
the CPU load, the available memory, the time-slice and the percentage of CPU power a new process
would get at startup, and the disk space on any host.

NWS CPU sensors use a combination of Unix provided utilities (namely uptime and vmstat)
and CPU tests that periodically actively measure the CPU utilization. In this way, the sensor does
not only provide the CPU occupancy time and an estimation of the available CPU for a new pro-
cess, but also takes into account other more dynamic aspects like the priority of the other processes.
Notice here that the stressing part of the sensor, namely the CPU test, is executed less often than
the Unix utilities because its execution frequency is determined dynamically.

The NWS network sensor relies only on active measures because data between machines is not
consistently available in end-to-end networks. The test consists of a timed network operation, such
as the transmission of a �xed amount of data, which are performed at regular intervals.

43

4.3. THE GRID RESOURCE INFORMATION SERVICE

Benchmarks

The sensors need benchmarks that measure the performance of the system by evaluating the perfor-
mance in an active way. �Active� here means that the system's resources are used for this estimation:
the resources are not available for other applications (or are available only to a limited extent).

We have seen in Section 4.2 that it would be di�cult to estimate the performance of a system
by a simple calculation.
For example we could weight each characteristic of the CPU (i.e. 0.8 × frequency + 0.1 × cache L1
size + 0.1 × bandwidth front side bus) that represent the weighted speed of the processor. Since
the weighting would require a lot of knowledge about the di�erent components; since some terms
can not be de�ned in a general manner (i.e. the frequency which does not have the same meaning
everywhere); and since there are always some aspects not taken into account (i.e. is it important that
the CPU supports hyperthreading technology?), this model is by no means adequate for measuring
the performance in heterogeneous grid environments.

For these reasons, the performance of a system is often evaluated by test workloads, which
are workloads used in performance studies. Either they are real, observed during normal system
execution, or they are simulated. The problem of a real workload is its non repeatability because
analysing its results is complicated and therefore not suitable for use as a test workload. Instead,
the synthetic workload (also called benchmark) simulates the characteristics of the real workload
but can be applied repeatedly in a controlled way.

We want to introduce now some types of benchmarks. Most of them were developed for com-
paring processors and timesharing systems, nevertheless their general principles can be applied to
other computing components such as network, databases, and so forth [JAIN, 91]. We will explain
each of these benchmarks and discuss the circumstances under which they may be appropriate.

• Addition instruction: Historically, the addition instruction was one of the most frequent
instructions in the CPU and the performance of the computer system was synonymous with
that of the processor. It was considered that the faster the addition instruction, the better
the performance of the computer. So the addition instruction was used as the sole workload,
and the addition time was accounted as the sole performance metric.

• Instruction mixes: With the arrival of new instruction for the processor, this metric did not
re�ect the performance of the CPU any more and workloads with more detailed instructions
were required. A common approach was to measure the frequency of instructions during real
execution. Then this usage frequency was coupled to the speci�cation of various instructions.
The result is the instruction mix that can indicate an average instruction time for a given mix
by the timings of the di�erent instructions. The averages can be used to compare di�erent pro-
cessors. One of the �rst examples of these instruction mixes is the Gibson mix [GIBSON, 59],
which uses thirteen di�erent instruction classes.

In another example the performance of CPUs could be compared on the basis of their through-
put. This can be done by the inverse of average instruction time, commonly quoted as the
MIPS (Millions of Instructions Per Second) or MFLOPS (Millions of Floating-Point Opera-
tions Per Second) rates for the processor.

44

4.3. THE GRID RESOURCE INFORMATION SERVICE

However it must be pointed out that

a) the instruction mixes only measure the speed of the processor. This may or may not have
an e�ect on the total system performance when the system consists of many other components.
System performance is limited by the performance of the bottleneck component, and unless
the processor is the bottleneck (that is, the usage is mostly compute bound), the MIPS rate
of the processor does not re�ect the system performance.
b) It is meaningless to compare the MIPS of two di�erent CPU architectures, such as Reduced
Instruction Set Computers (RISCs)17 and Complex Instruction Set Computers (CISCs)18,
since the instructions on the two computers are unequal. [JAIN, 91]
Another possible benchmark is the BOGOMIPS that gives, like MIPS, an indication of the
processor speed and is quoted as �the only portable way over the various CPUs (Intel-type
and non Intel-type) for getting an indication of the CPU speed� [DORST, 06]

However, today the number of instruction classes has risen enormously, but not all these
classes can be re�ected in the mixes. For example, the cache and pipeline technologies can
greatly in�uence the performance. Also, it depends on parameter values like the frequency of
zeros in matrixes or the frequency of a taken conditional branch.

In spite of these limitations, using instruction mixes can be interesting for comparisons between
other computers of similar architectures or for estimating the execution time for key algorithms
in application and system programs.

• Kernels: In brief, kernels are generalizations of instruction mixes and are workloads that
consist of the most frequent function used by researchers. Di�erent processors can then be
compared on the basis of their performance on this kernel operation. Examples of kernels
include Sieve, Puzzle, Tree Searching, Ackermann's Function, Matrix Inversion, and Sorting.

But even kernels do not re�ect the total system performance correctly because typically they
do not take into account I/O devices.

• Synthetic programs: More and more applications use the I/O devices and they become
an important part of the workload. Simple exerciser loops are used to measure the I/O
performance. Therefore, the loops make a determined number of service calls or I/O requests
and we can compute the average CPU time and elapsed time for each request or call.

But not only I/O devices can be measured; also operating system operations such as process
creation, forking, and memory allocation. Exerciser loops can be developed quickly and can
run with non-real data �les. The advantage is that the programs can be modi�ed easily and
ported to di�erent systems.

17RISC is a microprocessor CPU design philosophy that favours a smaller and simpler set of instructions. Examples
are ARM, DEC Alpha, PA-RISC, SPARC, MIPS, and IBM's PowerPC

18On the other hand, CISC is a microprocessor instruction set architecture in which each instruction can execute
several low-level operations, such as a load from memory, an arithmetic operation, and a memory store, all in a single
instruction. Examples are CDC 6600, System/360, VAX, PDP-11, Motorola 68000 family, and Intel and AMD x86
CPUs

45

4.3. THE GRID RESOURCE INFORMATION SERVICE

Nevertheless, they are often too small and they do not make representative memory or disk
references. In addition, the mechanisms of disk cache and page faults might not be adequately
exercised. Especially for grid environment, the exercisers are not suitable because the loops
may create synchronizations, which may have an important in�uence on performance.

So, if we apply this principle to some I/O components, we could measure with a special
exerciser for example:

� the RAM read and write speed.

� the SWAP read and write speed.

� the disk read, write, and delete time in sequential or random mode,

� the network bandwidth (with di�erent protocols like TCP or UDP - upload or download)

� the jitter (statistical dispersion in the delay of the packets)

� the network latency.

• Application benchmarks: If the benchmark is used to compare the performance of the
machines for a particular application, the benchmark may consist of a representative subset
of functions used in the application. In this way, the benchmark evaluates the performance of
almost all resources in the system, including processors, I/O devices, networks, and databases.
For example, the performance model can help to build such application benchmarks.

More examples about benchmarks can be found in the book [JAIN, 91].
We want to cite some important characteristics that will in�uence our choice for the design of a

new information service:

1. Each benchmark can load the system in a critical way, so their �rst disadvantage is the
limited application �eld in real time. For example a benchmark that tests the read and write
performance of a hard disk will use the hard disk to its limits. This load is by no means at
all desired at the execution time of disk sensitive applications.

2. Additionally, the execution of the benchmark takes a certain amount of time and if execution
does not last long enough, the benchmark could be imprecise because spikes could be evaluated
and not the average. But if the benchmark process takes too long, it would encumber the
proper execution of the other applications.

3. Another problem is that the benchmarks are sometimes not generally accepted. And if we
cannot compare our results to other results, the term evaluation does not make sense. For
example, a �rst server can run the benchmark, but another server situated under another ad-
ministration is not able to run it. Despite the excellent results of the �rst server's benchmark,
we are not capable to compare the two servers on the basis of this benchmark.

46

4.4. OBSERVATIONS

Simple requests

We have seen how data are transported, processed, analysed and used to achieve better performance,
but we not have seen all possibilities of how data are generated. Simple request is one type of
data source that is instantaneously accessible and less intrusive. We have to distinguish between
information that is simple information such as the number of processors actually in use or the CPU
frequency and historical information that is already stored and resumed by the system without the
explicit demand of applications. For example, the load average of the CPU and some statistics of
the disk are instantaneously accessible via the operating system.

As the operating system is itself a monitor that stores an important amount of statistical in-
formation about the system, it is quite easy to use these data for other purposes like performance
estimation. In this way, information is available about memory size, CPU information, memory
and CPU usage, the network usage, the number of processes on the computer, and even statistics
about the disk access. In addition, remember that performance does not necessary mean speed; the
status of a process can also be interesting, for example, to know whether an application is running,
killed, or sleeping. The sensor need only know the right directories where the information is stored,
or the functions that provides the information.

Other sources can be the programming language that often provides the same information as
the operating system, but in a more standardized way. These aspects will be discussed in detail in
the next chapter.

4.4 Observations

As we have seen in the last chapter, the DIET scheduler can access information about the perfor-
mance evaluation and performance prediction of resources. They are provided by three di�erent
tools:

• The CPU, the free memory, and the network performance between two hosts are provided by
the resource performance forecasting tool NWS.

• A predicted execution time for the request is accessible via the application-centric performance
prediction tool FAST.

• And �nally the plug-in scheduler provides information internal to DIET, information like the
last execution time of the SeD.

In the last chapters we have already pointed out some problems that consist of the current
version of DIET with this set of data. We will summarise the di�erent problems here and then
propose some solutions.

1. Some servers would never have FAST fully installed. Either because FAST or NWS does
not support the hardware architecture or because the services o�ered cannot be described
accurately enough in the FAST language for a valid bench campaign or estimation

47

4.4. OBSERVATIONS

2. The installation and con�guration is very di�cult because it depends on several programs
namely NWS, OPENLDAP, and GSL. These again depend on other programs like Cyrus
SASL 2.1.18+, OpenSSL 0.9.7+, POSIX REGEX software, Sleepycat Berkeley DB 4.2+, or
LTHREAD compatible thread package. Some of them are required, others are recommended,
depending on the features one wants to install.

Once installed, all these programs must be con�gured. For example, NWS with its � at least
� three components (NWSNameserver, NWSSensor, NWSMemory) needs three con�guration
�les. OPENLDAP is di�cult to con�gure too, and FAST needs the information about the
location of the other components and a description of the service written in the FAST language.

3. We know that the FAST predictions are based on the results of the benchmark database.
These benchmarks are run at the time of installation of the services to the FAST component.
For some services, these static measurements can incorrectly the real resource needs of the
service represent.

4. We have seen that FAST is particularly suited to numerical algebra routines whose perfor-
mance is not data-dependent and where a clear relationship exists between problem size and
performance. Nevertheless if this relationship is not clear or there are other routines used,
FAST's prediction would be not be accurate enough.

5. The decision to use DIET-external programs has advantages but also disadvantages: the
created dependence of DIET on other software implies not only waiting time for bug correction,
but also permanent code adaptation due to API changes in new releases.

6. FAST only19 uses the information incoming from NWS, so there are a lot of parameters that
are not taken in account (i.e. the read/write operation of the disk).

7. In principle, the default scheduling policy of DIET prioritises servers that are able to provide
the performance prediction information of FAST and NWS. In general, this approach works
well if all servers in the DIET hierarchy are able to provide these estimations. However,
load imbalances may occur if the concerned platforms are composed of SeDs with varying
capabilities: since DIET systematically prioritises server responses containing FAST and/or
NWS data, servers that do not respond with such performance data will never be chosen.

8. Hence, there are many reasons to refuse the deployment of FAST in DIET. But if we do not use
FAST, only NWS and the plug-in scheduler remains for accessing performance information.
Only three performance related metrics20 remain, and as in the critique above, the scheduler
will not take into account all performance parameters that in�uence the execution of the
request. Additionally, NWS is only accessible via the interface of FAST, so if FAST is not
installed at all, NWS is unavailable too. Finally the scheduler will only work with a round-
robin mechanism.

19FAST can also use its own, basic sensors, but they are not complementary to the information provided by NWS
20NWS provides much more than two kind of information (i.e. CPU frequency, CPU number, memory speed, �le

read and write speed, bandwidth), but there are not yet access functions in DIET implemented, or they are not
public (the bandwidth measure is only available for DIET programmers)

48

4.5. SUMMARY

9. Another problem consists of the way we can access these metrics. The plugin scheduler has
already de�ned one function for the access on FAST- and NWS-based metrics and another
function for the last execution time. At the moment this solution works �ne, but what happens
when new performance metrics will be available? It would be necessary to access each metric
by a speci�c function.

4.5 Summary

We have seen in this chapter the general data dependency of the di�erent tools: The sensors
that provide performance data from di�erent devices to the monitors, the monitors that o�er the
information to the performance prediction tools for the resources and the latter provide this forecast
to the application-speci�c performance prediction tool. With the example of FAST and NWS we
have seen that very complete and precise solutions are already available, but unfortunately, not all
aspects of the performance prediction are covered, or the solution is too complex for a simple use.
So we need an intermediate solution between highly complex prediction and nothing at all. If we
recapitulate,

• we need metrics even if the environment is very heterogeneous,

• we need a simple tool for basic metrics in the worst case scenario(i.e. if no other metrics are
available),

• we need more metrics covering more aspects of performance,

• we need a standard access to the di�erent metrics.

The implementation of these requirements can be read in Chapter 5.

49

Chapter 5

CoRI

The analysis in the previous chapters shows an important need for measurement tools. As we have
seen in the last chapter, DIET needs reliable resource information for scheduling provided by grid
resource information services. Our job here is to take up the challenges cited at the end of the last
chapter and to �nd an adequate solution for DIET.

In this chapter we will introduce the exact requirements of DIET for a grid information service,
the architecture of the new tool CoRI, (Collectors of Resource Information), the di�erent compo-
nents inside of CoRI, and the problems that we have encountered during the di�erent developing
phases.

5.1 Requirements analysis

The requirement analysis includes functional requirements and non functional requirements. In the
following sections these two types are elucidated.

Functional requirements

As we have seen in the last chapters, the scheduler is one of the elements of a grid infrastructure
that can in�uence heavily the performance of the system. We have seen that the scheduler can
only work correctly if it receives adequate information on the part of grid information services.
Although DIET has already a working performance prediction tool (namely FAST), it is necessary
to create a complementary information services. The reasons are cited in Section 4.4. The following
functionalities should be implemented in the new tool:

• The tool has to provide a basic set of performance measurements that can satisfy basic sched-
uler needs.

• The information has to be stored in estimation vectors (explained in Section 5.2.2).

• The tool must always provide an answer in order to avoid the blockage of the grid system. If
the tool is not able to provide a measurement, a generic response must be provided.

50

5.2. SOLUTION

In addition, the system (or the developer-de�ned scheduler) must be able to distinguish be-
tween real responses and those generic responses.

• The tool must provide one single interface for all kind of resource information services.

Non-Functional requirements

• Ubiquity: Because a grid is deployed in heterogeneous environments (as we de�ned the
characteristics in Chapter 1), the tool must support the resulting various operating systems,
the di�erent hardware infrastructure and the other di�culties due to the heterogeneity.

• Extensibility: The tool should not only provide adequate information for the existing DIET
(that is why we have made the state of art in the second chapter), but should be extensible
for new measurements needed in the future. Additionally, the tool should be extensible for
the use of other programs like Ganglia, RMI or REMOS.

• Accuracy and latency: The tool must provide accurate performance measurements in a
timely manner.

• Non-intrusiveness: The tool must load the resources for its measures as little as possible.

• KISS: Since DIET o�ers already complex performance prediction services, the demanded tool
should follow the approach �Keep It Simple and Stupid�.

• Concurrence: Because di�erent services run concurrently on the grid resources, the tool
must support concurrently access to measurements.

• Invisible: The tool should not hinder the execution of grid components in any way.

5.2 Solution

The new tool has to solve two main problems: �rstly, it must provide basic measurements that
are available no matter the context of the system. The service developer can rely on this col-
lector of resource information even if no other resource service like FAST or NWS is installed.
Secondly, the tool mustmanage the use of di�erent collectors at the same time and in a similar way.

As there are two problems, we o�er now two solutions: the CoRI-Easy collector for the �rst
problem, namely the collector, and the CoRI Manager for the second problem, namely manage-
ment of di�erent collectors. In general, we will name both these solutions together the CoRI tool,
which stands for Collectors of Resource Information. Both solutions are described in the following
section.

51

5.2. SOLUTION

5.2.1 Global architecture

The CoRI-Easy is a set of simple requests for basic resource information, and CoRI Manager will
allow the developer team to add other resource information services. As CoRI-Easy is a resource
information service, it seems to be logical to add it as collector to the new CoRI Manager. Figure 5.1
shows the architecture of CoRI. We can see that not only CoRI-Easy is available as collector but
FAST as well. In addition, this �gure shows that it is still possible to add new collectors (indicated
here by �other collectors�).

Figure 5.1: The architecture of CoRI: The CoRI-Manager and its collectors, namely the CoRI-Easy
and the FAST collector.

We will discuss the CoRI Manager �rst, and then the CoRI-Easy module.

5.2.2 CoRI Manager

The CoRI Manager allows the access to the di�erent modules (also referred to as collectors). A
module is any kind of element that can provide information about the system. This modularity
allows the separation of measurement sources and the selection of to each module. Even if the
manager should unify the di�erent resource information services, the trace of data remains, and so
the origin can be determined. For example it could be important to distinguish the data coming
from the CoRI-Easy module and the FAST module, because the information of FAST would give
a better estimation of the real value. The extensibility is ensured by the modular design too.
Because the interface of the manager allows in some steps to add a new module, additional modules
like Ganglia or NWS are possible.

We will �rst introduce the structure of the metrics used in DIET for the exchange of performance
data, and then present the di�erent CoRI Manager functions.

52

5.2. SOLUTION

Estimation Metric Vector

The following vector is described in DIET User's Manual [BOLZE and al., 06], and is reused here
for CoRI. This dissertation has not contributed to its design or implementation work.

In DIET, information services on SeD-side store their performance measurements in estimation
vectors, and the agents and the service developer can access this data for scheduling purposes.

The vector is divided into two parts, the �rst part represents standard performance measures
that are available through CoRI (for example, the number of CPUs, the memory usage,. . .) and the
plugin-scheduler facility (i.e. the last execution time), and the second part is reserved for developer-
de�ned measurements that are meaningful solely in the context of the application being developed.

The vector supports storage of single and multiple values, because some performance prediction
measurements are not only single values (called scalars) but a list of values (i.e. the frequency of
each processor). As there are di�erent performance measurements, the estimation vector does not
store only one type but multiple types. So the estimation vector is a container for multiple lists and
multiple scalars.

Figure 5.2 is an estimation vector sample that uses di�erent measurement types (identi�ed by
tags, see next section), namely the number of CPUs, the frequency of the processors and two
developer-de�ned measurements. We can see that the vector indicates that this component has two
CPUs and their frequencies are 20 and 50 MHz respectively. The lower part of the estimation vector
represents metrics de�ned by service developer. In the �gure, the numbers could represent 25 tasks
running, a �rst �le is available (1), and a second �le is not available (0)

Figure 5.2: An example of the estimation vector with some estimation tags.

In the current implementation of DIET, estimation vectors are not stored persistently, so they
are lost when the request is scheduled and cannot be shared with other requests or DIET services.

Estimation Tags

Since the vector contains di�erent information types, each standard performance measurement has
its own tag in the vector. This tag allows direct access to the measurement. Therefore, the Table 5.1

53

5.2. SOLUTION

describes the correspondence between measurement and tag.

Additionally, developer-de�ned performance measures can be stored in the vector and use inte-
gers for identi�cation.

In the Table 5.1, the �rst column indicates the name of the tag, the second column marks the
measurements that provides a list of values instead of a single value, the third column gives a short
explanation of the provided value (with its unit of measurement).

In addition to these tags, we have a special tag, namely EST_ALLINFOS that is an empty record
in the vector, but can be used to demand all known �elds of a particular collector.

Information tag multi- Explication

starts with EST_ value

TCOMP the predicted time to solve a problem

TIMESINCELASTSOLVE time since last solve has been made (sec)

FREECPU amount of free CPU between 0 and 1

FREEMEM amount of free memory (Mb)

NBCPU number of available processors

CPUSPEED x frequency of CPUs (MHz)

TOTALMEM total memory size (Mb)

BOGOMIPS x the BogoMips

CACHECPU x cache size CPUs (Kb)

TOTALSIZEDISK size of the partition (Mb)

FREESIZEDISK amount of free place on partition (Mb)

DISKACCESREAD average time to read on disk (Mb/sec)

DISKACCESWRITE average time to write to disk (sec)

ALLINFOS x [empty] �ll all possible �elds

Table 5.1: Explanation of the estimation tags

API of CoRI Manager

The interface of the CoRI Manager is available for DIET service developer (and implicitly also
available for DIET developer as well) and consists of three functions. The �rst function allows the
initialisation of the indicated collector and adds the collector to the set of collectors which are under
the control of the CoRI Manager.

int

diet_estimate_cori_add_collector(diet_est_collect_tag_t collector_type,

void* data);

The collector_type is used to designate a particular collector. In this way, the user is in full
control of measurement sources, so he can decide which collector should be used for measuring. In

54

5.2. SOLUTION

fact, only EST_COLL_EASY and EST_COLL_FAST are accepted, since the CoRI-Easy and the FAST
modules are the only collectors implemented yet. The second parameter, namely void* data, con-
tains speci�c information for each collector. Actually, neither FAST nor CoRI-Easy need additional
information, but as we wanted to create an extensible solution, we have already anticipated this case.

The second function is the access to measurements:

int diet_estimate_cori(estVector_t ev,

int info_type,

diet_est_collect_tag_t collector_type,

void* data);

The �rst parameter is ev the estimation vector, which is used to store the measurement. The second
parameter is the tag which we have seen in Section 5.2.2 and which speci�es the type of measurement
(i.e. the number of CPUs, the CPU load average,. . .). The user must also specify which collector
should be used to gather the information, so the collector_type must be indicated. The data

parameter is used for the same reason as for the �rst function: sometimes additional parameters
are necessary for the particular measure. FAST needs the description of the problem (also called
profile) for creating its application-speci�c performance predictions.

CoRI needs additional information for

• CPU load average (it must be indicated whether the average is computed based on 1, 5 or 15
minutes),

• for disk speed benchmarks (the path where the benchmark should be executed must be indi-
cated),

• for partition size measure (a path of a directory of the partition must be indicated)

But if CoRI-Easy does not receive this information, it uses default parameters (i.e. 15 minutes av-
erage for the CPU load and the current director for the disk benchmark and the disk size measure).

The last function is available to test the availability of CoRI-Easy.

void diet_estimate_coriEasy_print();

The result of this function can be similar to the following print screen:

start printing CoRI values..

CPU 0 cache : 1024 Kb

number of processors : 1

CPU 0 BogoMips : 5554.17

cpu average load : 0.56

free cpu : 0.2

disk speed in reading : 9.66665 Mbyte/s

disks peed in writing : 3.38776 Mbyte/s

total disk size : 7875.51 Mb

available disk size :373.727 Mb

total memory : 1011.86 Mb

available memory : 22.5195 Mb

end printing CoRI values

55

5.2. SOLUTION

5.2.3 CoRI-Easy module

The CoRI-Easy module is a resource collector that will provide basic performance measurements
of the SeD. Due to the interface with the CoRI Manager, the service developer and the DIET
developer have the possibility to access to CoRI-Easy metrics. We �rst introduce the design solution
of CoRI-Easy, then its API and �nally we will discuss some speci�c problems. CoRI-Easy should
be extensible like CoRI Manager, i.e. the actual functions must be easily replaced, extended or
completed by new functions. So it is important to choose an appropriate architecture that response
to these requirements. Figure 5.3 shows two possible designs for CoRI-Easy which we will detail
now.

Figure 5.3: Two possible architectures: Either sorting by operating systems, or by measure types

• If we use an operating system approach, we will �rst identify the operating system type, and
then call system functions provided by the operating system or �independent`� functions (i.e.
functions that runs on multi-platform, or multi-environments). If we want to support a new
operating system, we add in the CoRI-Easy hierarchy a new class C++ that contains all measure
functions. However, this solution has certain disadvantages, e.g. the question of how we can
identify the operating system. There is no standard function for accessing this information.
There are also design weaknesses because some functions are used for all operating systems
(like loadaverage), so there will be no real line between the di�erent operating systems. Fur-
thermore, a lot of UNIX derivations are actual used1 and each operating system would need
its own set of measure functions. Hence, the work for analysing the operating system, �nding
out the functions and integrating them in CoRI-Easy would be enormous and so we will not
choose this architecture.

• On the other hand we can use a functional approach. Therefore, we categorize the functions
by the information they provide. So each information type has its own class. For exam-

1Indeed, since the �rst UNIX version, the operating system has evolved and many derivations are available (an
example of the UNIX history is available at http://www.levenez.com/unix/history.html#10)

56

5.2. SOLUTION

ple every function concerning information about the CPU will be implemented in the class
Cori_easy_CPU. This avoids to the need to �nd out which is the used operating system. We
must simply test the existence of the function, so there is even the possibility to �nd some
information on unknown operating systems. So in this approach, it would be easier to add
a new measure type to the existing types (namely the CPU, memory and disk performance
measures). However, if we accept to test each function dynamically, instead of assuring the
availability on each operating system, we would have no real overview of the supported oper-
ating systems. In addition, some measurements are not easy to classify, for example the bus
speed between RAM and CPU. Does it belong to the CPU class, to the RAM class or to a
new class? Despite of these disadvantages this is the approach we have chosen for CoRI-Easy.

So each C++ class contains functions for a speci�c information type. Actually, the class
Cori_Easy_Disk is responsible for all measures concerning the hard disk. And the same methodol-
ogy is applied to the classes Cori_Easy_CPU and Cori_Easy_Memory. So if DIET developer wants
to insert network measures, he must create a Cori_Easy_Network and implements the measure
functions for the network.

The second mechanism allows the DIET developer to de�ne the hierarchy of function calls. The
hierarchy is necessary because sometimes di�erent ways are possible to deliver the measurement.
And each way has its advantages, but as well its disadvantages. So it is up to the DIET developer
to decide the right way. This problem will be discussed in detail in Section 5.2.3.

Our goal was not to create another sensor system or monitor service, so Cori-Easy is a set of
basic system calls for providing basic performance metrics. Furthermore the metrics are available
via the interface of the CoRI Manger.

But more important than the question �how do we measure?� is the question �what do we
measure?�. This question is the concern of the next section.

Provided measurements by CoRI-Easy

As we have seen in Section 4.2, many elements in�uence the performance, so it would be an enormous
deal of work to take into account all this information. For this reason, we will select and discuss
di�erent measurements that are more important for performance evaluation. Due to the state of art
presented in Chapter 4, we were able to extract a set of information that seems crucial for a basic
scheduling. Of course, each scheduling policy is di�erent, so it would be contradictorily to say that
this set is indispensable and complete.

In addition, the simplicity and non intrusiveness of the function have in�uenced the choice of
metrics. As the function can be called simultaneously many times, and because other tools are
already available for DIET, the following information can be provided under these conditions.

CPU power CPU power and CPU availability are in many articles the most important factor
for performance2. Therefore we provide di�erent measures for CPU performance evaluation.
First, CoRI-Easy provides hardware information namely the number of CPUs, the CPU

2But as we have seen in Chapter 4, the performance depends not always on the CPU

57

5.2. SOLUTION

frequency and the CPU cache size. These measurements do not give great indication about
actual load of CPUs, so we added more situation related information, namely the Bo-
goMips for indicating the CPU power and the load average and CPU usage for indicating the
CPU charge.

The BogoMips indicates in a special way the speed of the processor by measuring how fast
a certain kind of busy loop runs on a computer. Irrespective of whether this kind of
measure is too unscienti�c, we provide it here, because it seems to be one simple and
portable way to compare two processors approximately.

The CPU usage indicates the actual CPU load. The fraction includes all CPUs actually
available on the machine. This measure represents an actual state of the machine and
allows schedulers to be high reactive.
That is why it is suitable for high rate scheduling, i.e. when many small requests must
be scheduled at the same time, it is important to know the instant load of the di�erent
SeDs.

The load average indicates the average CPU queue length of runnable processes. So if the
value is equal to 0, no process using the CPU and a new process can bene�t from the
entire CPU resources. When the load average is equal to 1, a mono processor machine
would be fully loaded, but a dual processor has still resources available. With a load
average of 4 the mono processor should be a quad processor for treating all processes in
time.
This measure represents a long term CPU load measurement. It can be used for any size
of requests, but it is not suitable for high rate scheduling executed in short time due to
a low reactivity.

Memory capacity The memory is the second important factor that in�uences performance. The
provided metrics are the total memory size and the available memory size.

Disk Performance and capacity Finally, performance and capacity of a device can be measured.
CoRI-Easy provides metrics about the read and write performance of any writable device, as
well the maximal capacity and the free capacity of any device.

Network performance CoRI-Easy should provide some indications about the performance like
the latency and error transmission, but functions for these metrics were not elaborated for
time reasons.

Sources of information

Now that we have chosen the metrics for CoRI-Easy, we must decide how to extract this information.
This section will explain the problems that arise if we try to extract low-level information from
heterogeneous systems.

1. Some operating systems provide functions for gathering information like the CPU frequency,
the cache size, . . . but in heterogeneous systems, the functions may not be available for each
operating system.

58

5.2. SOLUTION

For example, some Linux-based operating systems provide the virtual directory /proc for
information about the CPU, but the MacOS operating system does not provide this directory.

Some functions are only available since a certain version. For example, the repertory
/proc/diskstats for disk statistics is only available since Linux 2.5.69.

2. All roads lead to Rome. In our context this would mean that a lot of functions are available for
gathering the information. But the semantic or syntax of these functions are rarely identical
on the same operating system or on di�erent operating systems. For example, the CPU load
average can be read with di�erent methods: by the virtual directory /proc, by the GNU C
library with the function getloadavg, or by the command top. However, not each function
provides the same accuracy. The command top has in general a refresh rate of three second,
but no standard speci�es that it is the same on each Linux distribution! On the other hand,
we have the GNU C library, where the function is speci�ed, accepted and standardized. So
�nally, which of the two functions would we choose now for the measurement?

Another example is the interval of average for the load average: �On some systems, such as
Digital Unix operating systems, these are 5, 30, and 60 second averages, while on others, such
as Linux, these are 1, 5, and 15 minute averages� [DINDA and al., 99].

A last example: The command top support the parameter -n, but the call top -n 1 on
RedHat would refresh the measurements one times, contrary to the operating system FreeBSD
which would display only the �rst process in the list.

3. The deployment of a grid architecture should not require special authorization for its execution.
Unfortunately, some functions provided by the operating system need advanced privileges for
the call. For example, only members of the group �disk� can execute the command line
program hdparm.

We have analysed the di�erent sources where the information can be retrieved and we can point
out now di�erent source levels. Each level represents a di�erent degree of portability and the higher
the level, the higher the portability. This allows us to de�ne our preferences. This means if at the
highest level a function provides a metric, we will advantage this function.

• The standard C library is the highest level because DIET code is based on standard C, so
we are sure to have at least the functions provided by this level for our measure functions.
Indeed some of them are written in simple C code without external system calls, for example
the benchmarks for reading and writing speed of devices.

• The GNU Library C is an extension of the standard C library, so di�erent additional
functions are available. It is used by the program OmniORB3 which is in turn in DIET.
So we are assured that we have this set of information too. Amongst others, the function
int get_nprocs (void) that gives the number of processors, use this library.

3omniORB is a robust high performance CORBA ORB for C++: http://omniorb.sourceforge.net/index.html

59

5.2. SOLUTION

• The third level is the POSIX standard4 . According to The Open Group, one intended
group of people for these standard are �Persons developing applications where portability is
an objective� [POSIX, 04]. So, it should be suitable for our purpose and we use this standard
for information about memory via the command line program ps, or information about the disk
via the command line program df. Nevertheless the status as standard, not every operating
system developer must follow this standard, so it is not sure that all operating systems provide
these functions. In addition, the set of functions de�ned by the POSIX standard is restricted
and therefore other measures functions must be found elsewhere.

• The fourth level is the operating system but we have already seen that it would be very
di�cult to support all systems. In this category we use, for example, the virtual directory
/proc for information about the processors (frequency, cache, BogoMips5).

• So, if the operating system makes problem, we could perhaps avoid the operating system
and attack directly the lower level. . We have therefore analysed the Linux kernel code for
extracting the function that provides the number of processors. Unfortunately, the function
consists of a set of other functions where each of these functions is responsible for one speci�c
processor type. It would be an enormous work to extract these functions, and to maintain the
set of function for new processor types. Moreover, one principle of the operating system is to
hide such technical details, so we should abide by this rationale.

So actually, we work with four di�erent levels, namely the C, the GNU, the POSIX standards
and the operating systems. As we have seen now, multiple levels can be used for measure functions.
This is why CoRI-Easy functions utilize a set of other functions that are tested for their availability.
If the �rst function doesn't work, the next one is tested.

Furthermore, we have to guarantee low latency. As the most of these functions use virtual
directories access or standard functions, we should be able to provide fast response times. In order
to show the performance of these calls, we have made some tests for the di�erent measures. The
following test is made on a Pentium 4, 2.4 GHz, 512 Mb RAM, with the operating system Linux
2.6.16. We will loop the calls of each measure during 5 seconds.

Table 5.2 represents the benchmark tests and we can see that some functions are very fast,
and others too slow. This di�erence comes from the dissimilar functions we use: accessing the
/proc directory takes less times than running the command program df. Also, we detect ine�cient
measures for reading and writing disk speed. These problems are due to disk technology: when the
benchmark will write to the disk, the data will be written to the cache �rst and only then to disk. So
we must write more than the disk cache to the disk to avoid the cache. Nevertheless, this approach
raises some questions about the benchmark validity and generality, because the cache is part of
the disk, and that is why its acceleration should be taken into account for measuring performance.
Finally, we must reduce the utilization of these functions to maintain a reasonable latency for the
system.

4The Portable Operating System Interface (POSIX) standardization are written and maintained by the PASC
(Portable Applications Standards Committee)

5Actually, the BogoMips is a static value because it is measured only once at machine boot time.

60

5.3. CHANGES IN THE DIET SOFTWARE

Information tag number of

starts with EST_ loops

FREECPU 242

FREEMEM 167 165

NBCPU 59 641

CPUSPEED 80 940

TOTALMEM 174 778

BOGOMIPS 88 136

CACHECPU 96 377

TOTALSIZEDISK 328

FREESIZEDISK 341

DISKACCESREAD 1

DISKACCESWRITE 36

Table 5.2: The low latency test for the CoRI measure functions

FAST module

We have already mentioned that it is possible to receive FAST performance prediction via CoRI
Manager. The FAST collector is fully integrated into CoRI and the old API of FAST is deleted.
One improvement is that the SeD side of FAST will be launched on explicitly service developer
demand only.

5.3 Changes in the DIET software

Since CoRI is fully integrated in DIET, some changes of DIET code were necessary. In order to
control these changes, we use a compiler's pre-processing mechanism. In this way we are able to
deactivate CoRI and its impact on DIET code. So, it is still possible to use DIET without CoRI,
but some important additional measurements are not available in this case. Table 5.3 shows the
di�erent compiler options and the measurements that are available with each compiler mode. For
example if we compile DIET with FAST but without CoRI, we have the same information set as
before implementing CoRI. However, this set was not exhaustive and for user that want to write
their plugin scheduler, it would be interesting - but not mandatory - to compile with CoRI in order
to have a full grid resource information service.

But if we compile DIET with CoRI, there are not only more measurements available, furthermore
we made the following changes in DIET:

• The default scheduling has changed: we have seen in Section 3.5 the sequence for scheduling
policy was based on FAST prediction. In case of non availability it was based on NWS resource
forecasting, then a round-robin scheduling was performed, and �nally, with no information,

61

5.3. CHANGES IN THE DIET SOFTWARE

no cori --enable-cori

Information tag no FAST �with-FAST no FAST �with-FAST

starts with EST_

TCOMP x

FREECPU x x x

FREEMEM x x x

NBCPU x x x

CPUSPEED x x

TOTALMEM x x

BOGOMIPS x x

CACHECPU x x

TOTALSIZEDISK x x

FREESIZEDISK x x

DISKACCESREAD x x

DISKACCESWRITE x x

ALLINFOS x x

Table 5.3: This table indicates the set of available information depending on compile options

the random scheduling was performed. Now we have changed this sequence with the following
reasons:

First, we have seen that the scheduling for NWS is rarely adequate. And second, as the plugin
scheduler is available, it should be up to the developer of the service to integrate an adequate
scheduling.

So, we have decided to remove the �rst and second scheduling policy, namely the FAST and
NWS based scheduling.

• At the beginning of the CoRI project, the �rst requirement was to provide the standard estima-
tion records of the estimation vector with measurements that would allow a default scheduling
more appropriated than the round-robin. But as we have now seen in this dissertation, a de-
fault scheduling, which would be advantageous for any kind of program, is not possible, and
an approximation is di�cult to elaborate. That is why the search for a new scheduling has
been suspended. And if no scheduler uses the CoRI measurements, it is not necessary to
measure with CoRI on each request. So, the only change that was planned for DIET, namely
the CoRI call for providing a full �lled estimation vector, has not been introduced, and CoRI
is used for developer-de�ned schedulers only. In the following chapter we will introduce some
basic scheduler policies, but this is only the beginning for further researches.

62

5.4. EXAMPLES

5.4 Examples

In general we have tested the CoRI Manager on di�erent operating systems like RedHat, Ubuntu,
MacOS and FreeBSD. CoRI-Easy is successfully tested on the GRID'5000.

We provide a new example for the DIET project called CoRI example. This service is the
computation of the Fibonacci number6 with capacity until 224 i.e Fibonacci of 46. This computation
is very CPU intensive, but otherwise less non-CPU-resource demanding.

We will now testing small examples on the gdsdmi cluster.

5.5 Testing on the cluster GDS/DMI

The GDS/DMI is a cluster site, including

• 8 servers: SuperMicro 5013-GM, motherboard SuperMicro P4SGE, processor P4 2.4GHz,
FSB400, 256Mo EGG RAM, 40Go hard disk, operating system Linux 2.6.16.

• 5 servers: SuperMicro 6013PI, motherboard SuperMicro X5DPR-IG2, processor Intel P4
XEON 2.4GHz, FSB533, 1Go RAM, 40Go hard disk, operating system Linux 2.6.16.

• 14 other servers.

We sent 140 requests on DIET architecture by a single client. We have used the plug-in scheduler
for creating our own scheduling policy. This policy prefers the SeD with the lowest load average.
As comparison we use the standard scheduling, namely the round robin.

5.5.1 Example 1: Simple request

In our �rst example, we submitted the requests on DIET architecture with 1 MA (MA_0), 2
LA (LA_0-LA_1) and 16 SeDs. By using the DIET tool VizDIET, we are able to visualize this
architecture in Figure 5.4.

In this �rst example we launched the request in a time interval of 5 seconds. The tasks are
identical workloads with an average solve time of 24 seconds. The total execution time of all
requests is 3 363 seconds for the load average scheduler and 3 581 seconds for the round robin
scheduler.

In this context, the new scheduler is nearly equal to the standard round robin scheduler. The
Figure 5.6 and Figure 5.5 show the deployment of the request respectively for a load average schedul-
ing and a round robin scheduling. Each request is represented is one block on the �gure. Depending
on the request's computing start time the �gure indicates the SeD that computes the request and
the computing time interval. We can remark that in Figure 5.6 2 pairs of task were executed on the
same SeD at the same time. At �rst sight this should not be optimal, because there are at any time

6Fibonacci numbers form a sequence de�ned recursively by:

Fn := F (n) :=

8><>:
0 if n = 0;

1 if n = 1;

F (n− 1) + F (n− 2) if n > 1.

63

5.5. TESTING ON THE CLUSTER GDS/DMI

other SeD that are not occupied. But as we work here on a heterogeneous system, the computing
takes less time, and the load average is not varying so much. Indeed, the two computers 1 and 8
are used two times one consecutively. That is why their load average values rise and they are used
more rarely. In this way more requests are attributed to the more powerful machines.

Figure 5.4: Example of a deployed DIET architecture visualized with VizDIET: The master agent,
the local agents and the server daemons

64

5.5. TESTING ON THE CLUSTER GDS/DMI

Figure 5.5: The Gantt view of scheduled requests on di�erent SeDs for the test 1, round robin

65

5.5. TESTING ON THE CLUSTER GDS/DMI

Figure 5.6: The Gantt view of deployed requests on di�erent SeDs for the test 1, load average

66

5.5. TESTING ON THE CLUSTER GDS/DMI

5.5.2 Test 2

In the second and third example, we submitted the requests (of priority 22) on DIET architecture
with 1 MA (MA_0), 4 LA (LA_0-LA_1) and 24 SeDs. Figure 5.7 visualizes this architecture.
Moreover, we used a test workload for simulating external in�uence by other users. These processes
are of priority 25 and generate a load average of 1 on the SeD gdsdmi14 until gdsdmi20.

Figure 5.7: Example of a deployed DIET architecture visualized with VizDIET: The master agent,
the local agents and the server daemons

So in the second test, identical tasks are submitted to the testbed at intervals of 1 second. The
total execution time of all requests is 20 937 seconds for the load average scheduler and 6 992 seconds
for the round robin scheduler.

The round robin scheduling is consequently much more suitable than the load average scheduling
in this case. It is due to the low reactivity that too many requests are already sent to the lower
occupied SeDs. These SeDs will be overwhelmed by the new tasks, and their low load average does
not respond to the actual high load. The load average cannot replace the round robin scheduling for
many big requests in short time intervals, but with enough knowledge about the request, it should
be able to calibrate the load average for its purposes.

67

5.5. TESTING ON THE CLUSTER GDS/DMI

Figure 5.8: The Gantt view of deployed requests on di�erent SeDs for the test 2, load average

68

5.5. TESTING ON THE CLUSTER GDS/DMI

Figure 5.9: The Gantt view of deployed requests on di�erent SeDs for the test 2, round robin
scheduling

69

5.5. TESTING ON THE CLUSTER GDS/DMI

5.5.3 Test 3

As in test 2, we submitted 140 requests on a DIET architecture with 1 MA, 4 LA and 24 SeDs.
The scheduling includes di�erent workloads with di�erent time intervals between the two requests.
There are still test workloads on the machines gdsdmi14 until gdsdmi20.

The total execution time of all requests is 7555 seconds for the load average scheduler and 3024
seconds for the round robin scheduler. This bad execution time of the load average is again caused
by the low reactivity. In the actual case, the requests have di�erent computation time, and most
of them are computed before the load averages of the computing SeDs exceed 1. Figure 5.10 shows
this behaviour: Three of the 24 SeD do not have compute any request. Figure 5.11 shows that the
round robin scheduling is more adapted for these request suite, but that there are still performance
losses (requests are computed by already occupied server whether other free SeDs are available).

Figure 5.10: The Gantt view of deployed requests on di�erent SeDs for the test 3, load average

70

5.6. FUTURE WORKS

Figure 5.11: The Gantt view of deployed requests on di�erent SeDs for the test 3, round robin
scheduling

Conclusion

The load average can be used for particular scheduling with high time intervals. But it is rarely
useful for scheduling with high reactivity needs. Therefore we should use the free CPU metric.

5.6 Future works

Even if the new tool CoRI works �ne, some improvements are necessary for the future.

• Non-intrusiveness and low latency

� Estimation vectors are always instantiations of speci�c requests, so they are created for
the one request and they will die if the request is scheduled. However the measurements
are neither stored persistently for other services nor accessible for other requests. For this
reason, a new vector with new measures must be performed for each request; nonetheless
it could be possible to reuse the information. The latency and the intrusiveness could

71

5.6. FUTURE WORKS

be reduced enormous if a cache mechanism would be installed. Instead of accessing the
measure, an old measurement would be provided. At this moment, it would be necessary
to integrate a time stamp or a timer in order to refresh the measurement periodically.
And this work would bring us back to the sensor and monitor mechanisms.

� The read and write measures for devices takes too long and uses the full CPU capacity.
For further versions of CoRI-Easy, these measure functions should be enhanced.

• High availability

� Other factors can in�uence the performance of machines, for example the network. That
is why new performance measures should be provided by CoRI-Easy.

� Every operating system provides di�erent basic functions to get the performance infor-
mation. If the measurements are perceived by operating system functions (fourth level),
the function set for this measure must be updated to provide this measure for every
operating system.

• We need measures with higher accuracy. For example the load average is not su�ciently
expressive for handling with di�erent priority level. Which priority level do the processes that
occupy the CPU have? Can the new process access directly to CPU resources due to a higher
priority level? Another example is the available memory. As the memory is handled di�erently
by the operating systems, it is sometimes di�cult to measure the real available memory. Swap
technologies and policies are sometimes very di�erent and can falsify the measurements.

• An easy way to provide all these measurements is to use new collectors. Integrating other ex-
ternal tools like Ganglia [MASSIE and al., 04] or JAMM [TIERNEY and al., 00] to the CoRI
Manager can provide lower intrusiveness and latency and higher accuracy and availability.

Despite all these problems, CoRI is an important step towards a fully management service for
resource information. It will initially enable the service developer to create user de�ned schedulers
with the necessary resource information, and then enable the DIET developer team to de�ne new
default scheduling policies.

Summary

In this section we have seen the di�erent requirements for the new grid resource information service
CoRI. We have seen the architecture of CoRI Manager and CoRI-Easy, their architectures and their
APIs. For CoRI-Easy we have pointed out the di�culties of a low level service that must support
multi platforms, and we have proposed some approaches to resolve them. Hence we have detailed for
CoRI-Easy the design solution, the di�erent measure functions, and the arising problems. Finally
we have made a future perspective for the CoRI tool.

72

Conclusion

This dissertation about grid resource information services introduced the main components about
the grid, the scheduling, and the di�erent classes of information services. An important part of
the time was devoted to this state of the art. The practical part consisted of the comprehension
of the tool DIET and its accessory programs (VizDIET, GoDIET,. . .), the comprehension of the
lower level details about DIET's implementation in order to integrate the new CoRI tool. Due
to the work associated with this dissertation, DIET possess now a basic information service that
allows DIET to be independent of other software like FAST or NWS and that provides some basic
metrics useful for basic scheduling. But as we have seen in the Section 5.6, there are still some
improvements possible and some problems to resolve. In addition, the DIET developer can now
integrate other existing information services like Ganglia or Nagios into the DIET toolkit. This
allows more accurate information about the grid elements and thereby better scheduling. Also, the
service developer can now use the plug-in scheduler facility in combination with CoRI for building
user-de�ned scheduler policies for his services.

In the future, grid computing will become more and more important, and so the number and the
size of grids will likewise becomes more important. That is why grid middleware like DIET will take
advantage of their special architecture that supports these growing number of grid components. In
the sub-domain of resource information services, it will be important to add new collectors that are
especially designed for the grid environment. So we can see the CoRI Manager as an open window
that allows the use of a lot of di�erent tools developed around the world, and the CoRI-Easy collector
as the �rst version of a homemade resource monitor.

73

Bibliography

[ANDREOZZI and al, 03] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. Tor-
tone, C. Vistoli, GridICE: A Monitoring Service for the Grid, in Proceedings of the Third
Cracow Grid Workshop, Cracow, Poland, October 27-29, 2003, pp. 220-226.

[ARABE and al, 95] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey,
and P. Stephan,Dome: Parallel programming in a heterogeneous multiuser environment, in
Technical Report TR CMU-CS-95-137, Carnegie Mellon University, April 1995.

[ARNOLD and al, 01] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller,
K. Sagi, Z. Shi, and S. Vadhiyar, Users' Guide to NetSolve V1.4., in Computer Science
Dept. Technical Report CS-01-467, University of Tennessee, Knoxville, TN, July 2001. http:
//www.cs.utk.edu/netsolve/

[AU and al, 96] P. Au, J. Darlington, M. Ghanem, Y. Guo, H. To, and J. Yang, Co-
ordinating heterogeneous parallel computation, Proceedings of the 1996 EuroPar Conference,
1996.

[BERMAN, 99] F. Berman, High-performance schedulers, in Foster, I. and Kesselman, C. eds.
The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, pp. 279-309,
1999.

[BERMAN and al., 97] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faer-
man, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N.
Spring, A. Su, D. Zagorodnov0, Adaptive Computing on the Grid Using AppLeS, in IEEE
Trans. Parallel and Distributed Systems, vol. 14, no. 4, pp. 369-382, 2003.

[BOLZE and al., 06] R. Bolze, Y., E. Caron, P. Kaur Chouhan, P. Combes, S. Dahan, H.
Dail, B. Delfabro, P. Frauenkron, G. Hoesch, M. Jan, J.-Y. L'xcellent, C. Pera,
C. Pontvieux, A. Su, C. Tedeschi, and A. Vernois, DIET User's Manual, Version 2.1,
January 2001, Copyright INRIA.

[BOTE-LORENZO and al, 04] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. Gómez-
Sánchez, Grid characteristics and uses: a grid de�nition, in PostProc. of the 1st European
Across Grids Conference, Santiago de Compostela, Spain, Lecture Notes in Computer Science,
2970, pp. 291-298, February 2004.

74

BIBLIOGRAPHY

[CAMPBELL and al, 04] J. P. Campbell, R. A. McCloy, S. H. Oppler, C. E. Sager, A
theory of performance, in E. Schmitt, W. C. Borman, & Associates (Eds.), Personnel selection
in organizations, (pp. 35-70), San Francisco: Jossey-Bass, 1993.

[CAPPELLO and al., 05] F. Cappello, S. Djilalia, G. Fedak, T. Heraulta, F. Magni-
ettea, V. Nérib and O. Lodygenskyc, Computing on large-scale distributed systems:
XtremWeb architecture, programming models, security, tests and convergence with grid, in Fu-
ture Generation Computer Systems, 21(3):417-437, March 2005.

[CARON and al, 05] E. Caron and F. Deprez, DIET: A Scalable Toolbox to Build Network
Enabled Servers on the Grid, In Research Report No 2005-23, June 2005.

[CARON and al.] E. Caron, F. Desprez, F. Petit, and C. Tedeschi, A Peer-to-Peer
Extension of Network-Enabled Server Systems, in e-Science 2005. First IEEE Inter-
national Conference on e-Science and Grid Computing, (pp 430-437), Melbourne, Australia,
December 2005.

[CARON and al, 02] E. Caron and F. Suter, Parallel Extension of a Dynamic Performance
Forecasting Tool, in Proceedings of the International Symposium on Parallel and Distributed
Computing (ISPDC'02), Iasi, Romania, pages 80�93, 2002.

[CHAPIN and al, 98] S. J. Chapin, J. Karpovich, and A. Grimshaw, Resource management
in legion, in Technical Report CS9809, University of Virginia, Department of Computer
Science, May 1998.

[CSAJKOWSKI and al, 01] K. Czajkowski, C. Kesselman, S. Fitzgerald, I. Foster, Grid
Information Services for Distributed Resource Sharing, in 10th IEEE International Symposium
on High Performance Distributed Computing (HPDC-10 '01), hpdc, p. 0181, 2001.

[DAHAN, 05] S. Dahan, Mécanismes de recherche de services extensibles pour les environnements
de grilles de calcul, Université de Franche Comté, 2005.

[DAIL and al., 06] H. Dail and F. Desprez, Experiences with Hierarchical Request Flow Manage-
ment for Network-Enabled Server Environments, in International Journal of High Performance
Computing Applications, Volume 20, Number 1, February 2006

[DEWITT and al., 98] A. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste,
J. Subhlok, D. Sutherland, ReMoS: A Resource Monitoring System for Network-Aware
Applications, Carnegie Mellon School of Computer Science, CMU-CS-97-194, December 1998.

[DINDA and al., 99] P. A. Dinda and D. R. O�Hallaron, An extensible toolkit for resource
prediction in distributed systems, in Technical Report CMU-CS-99-138, CMU, 1999.

[DORST, 06] W. V. Dorst, BogoMips mini-Howto, http://www.clifton.nl/index.html?

bogomips.html, (Version V38, last revised 02/03/2006) (Date of access 28/04/06).

75

BIBLIOGRAPHY

[FOSTER and al, 96] I. Foster, J. Geisler, B. Nickless, W. Smith, and S. Tuecke, Soft-
ware infrastructure for the I-WAY high-performance distributed computing experiment,in hpdc
, p. 562, 1996.

[FOSTER and al, 98] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufman Publishers, San Francisco, 1998.

[FOSTER and al, 01] I. Foster, C. Kesselman and Steven Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations, Lecture Notes in Computer Science, 2001,
citeseer.ist.psu.edu/foster01anatomy.html.

[FOSTER, 02] I. Foster, What is the Grid? A Three Point Checklist, in GridToday Vol. 1, No. 6
July 2002, http://www.gridtoday.com/02/0722/020722.html.

[GALLANT and al., 92] Gallant, A. Ronald, and George Tauchen , A Nonparametric Ap-
proach to Nonlinear Time Series Analysis: Estimation and Simulation, in David Brillinger,
Peter Caines, John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad S. Taqqu eds.
New Directions in Time Series Analysis, Part II. New York: Springer-Verlag, 71-92, 1992

[GAUTAMA and al., 00] H. Gautama and A. J. C. van Gemund Static performance predic-
tion of data-dependent programs, in Proceedings of 2nd International Workshop on Software
Performance, Association for Computing Machinery, New York, N.Y., pp. 216-226, 2000.

[GEHRINF and al., 96] J. Gehrinf and A. Reinfeld,Mars - a framework for minimizing the job
execution time in a metacomputing environment, in Proceedings of Future General Computer
Systems, 1996.

[GERNDT and al., 04] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P. Kacsuk,
Z. Nemeth, N. Podhorszki, H.-L. Truong, T. Fahringer, M. Bubak, E. Laure,
and T. Margalef, Performance Tools for the Grid: State of the Art and Future, in Re-
search Report Series, Lehrstuhl fuer Rechnertechnik und Rechnerorganisation (LRR-TUM)
Technische Universitaet Muenchen. Shaker Verlag, volume 30, ISBN 3-8322-2413-0, 2004.
http://citeseer.ist.psu.edu/gerndt04performance.html

[GIBSON, 59] J. C. Gibson, The Gibson Mix, in Technical Report TR 00.2043, IBM Systems
Development Division, Poughkeepsie, NY, 1970. Widely quoted as a research done in 1959.

GRIDToday, Volume 1, No. 6, July 2002.

[GLOBUS] The Globus Alliance, www.globus.org.

[GRID'5000] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou,
S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, and O.
Richard, Grid'5000: a large scale, recon�gurable, controlable and monitorable Grid platform,
in Grid'2005 Workshop, IEEE/ACM, Seattle, USA, November 2005.

[GRIDRPC] GridRPC Working Group, https://forge.gridforum.org/

projects/gridrpc-wg/.

76

BIBLIOGRAPHY

[HOWES and al., 99] I. A. Howes, M. C. Smith, and G. S. Good, Understanding and deploying
LDAP directory services, in Macmillian Technical Publishing, ISBN: 1-57870-070-1, 1999.

[JAIN, 91] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation and Modeling, John Wiley and Sons, Inc., New York,
1991.

[KARONIS and al, 03] N. T. Karonis, B. Toonen, and I. Foster, MPICH-G2: A grid-enabled
implementation of the Message Passing Interface, J. Parallel Distrib. Comput., 63(5):551-563,
May 2003.

[BAILEY and al, 05] D.H. Bailey and A. Snavely, Performance modeling: Understanding the
present and predicting the future, in Euro-Par Conference, August 2005.

[LEE and al, 01] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller, G. Allen
and J. Saltz, A Grid Programming Primer, http://www.gridforum.org/7_APM/APS.htm,
submitted to the Global Grid Forum, August 2001.

[LIANG and al, 05] T. Liang, C. Wu, J. Chang, C. Shieh and P. Fan, Enabling Software
DSM System for Grid Computing, in 8th International Symposium on Parallel Architectures,
Algorithms and Networks, ispan, pp. 428-435, 2005.

[MASSIE and al., 04] M.L. Massie, B.N. Chun, D.E. Culler, Ganglia Distributed Monitor-
ing System: Design, Implementation, and Experience, in Parallel Computing 30, pp. 817-840,
February 2004.

[MPI] Message Passing Interface, http://www-unix.mcs.anl.gov/mpi/

[NAKADA and al, 99] H. Nakada, M. Sato, and S. Sekiguchi, Design and Implementa-
tions of Ninf: to- wards a Global Computing Infrastructure, in Future Generation Comput-
ing Systems, Metacomputing Issue, 15(5-6):649-658, 1999. http://ninf.apgrid.org/papers/
papers.shtml

[NAKADA and al, 02] H. Nakada, S. Matsuoka, K. Seymour, J. Dangarra, C. Lee, H.
Casanova GridRPC: A Remote Procedure Call API for Grid Computing Grid Computing -
GRID 2002, in Third International Workshop, Baltimore, MD, USA, Proceedings, Springer ,
LNCS, Volume 2536, pp. 274-278, November 2002.

[NEWMAN and al, 03] , H.B. Newman, I.C. Legrand, P. Galvez, R. Voicu, and
C. Cirstoiu, MonALISA : A Distributed Monitoring Service Architecture, http://www.

citebase.org/cgi-bin/citations?id=oai:arXiv.org:cs/0306096, 2003.

[OGDEN, 97] R. Ogden, Essential Wavelets for Statistical Applications and Data Analysis, in
Birkhauser Boston Inc., 1997.

[POSIX, 04] IEEE and The Open Group, The Single UNIX Speci�cation, Version 3, 2004 Edi-
tion (8 Volumes), http://www.unix.org/single_unix_specification/.

77

BIBLIOGRAPHY

[POVRAY] Persistence of Vision Raytracer, http://www.povray.org/

[QUINSON, 02] M. Quinson, Dynamic Performance Forecasting for Network-Enabled Servers in
a Metacomputing Environment, in International Workshop on Performance Modeling, Evalua-
tion, and Optimization of Parallel and Distributed Systems (PMEO-PDS'02), April 2002.

[SEYMOUR and al, 04] K. Seymour, C. Lee, F. Desprez, H. Nakada and Y. Tanaka, The
End-User and Middleware APIs for GridRPC, in Workshop on Grid Application Programming
Interfaces, In conjunction with GGF12, Brussels, Belgium, September 2004.

[SONNENTAG and al, 02] , S. Sonnentag and M. Frese, Performance Concepts and Perfor-
mance Theory, in Psychological Management of Individual Performance, S. Sonnentag (ed.),
Wiley, Chichester, pp. 3-25, 2002.

[SU, 05] A. Su, Design and Implemention of a Plug-in Scheduler for DIET, slides, May 2005.

[TIERNEY and al., 00] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, M.
Thompson, A Monitoring Sensor Management System for Grid Environments, in Proceedings
of the IEEE High Performance Distributed Computing conference (HPDC-9), LBNL-45260,
August 2000.

[TIERNEY and al., 02] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor,
R. Wolski, A Grid Monitoring Architecture, in Global Grid Forum, GWDPerf-16�3, August
2002, http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf.

[WATSON and al., 02] WA. Watson III , I. Bird, J. Chen, B. Hess, A. Kowalski and Y.
Chen, A Web Services Data Analysis Grid, in Concurrency and Computation: Practice and
Experience, Vol. 14, Grid Computing environments Special Issue 13-15, pages 1303-1312, 2002

[WOLSKI and al, 99] R.Wolski, N. T. Spring and J. Hayes, The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing, in Future Generation
Computing Systems, in Metacomputing Issue, 15(5-6):757-768, October 1999.

[XUEHAI and al., 03] X. Zhang, J. Freschl, and J. M. Schopf, A performance study of mon-
itoring and information services for distributed systems, in Proceedings of the IEEE Twelfth
International Symposium on High-Performance Distributed Computing, (HPDC-12), 2003.

78

