14,318 research outputs found

    Planning and Scheduling of Business Processes in Run-Time: A Repair Planning Example

    Get PDF
    Over the last decade, the efficient and flexible management of business processes has become one of the most critical success aspects. Furthermore, there exists a growing interest in the application of Artificial Intelligence Planning and Scheduling techniques to automate the production and execution of models of organization. However, from our point of view, several connections between both disciplines remains to be exploited. The current work presents a proposal for modelling and enacting business processes that involve the selection and order of the activities to be executed (planning), besides the resource allocation (scheduling), considering the optimization of several functions and the reach of some objectives. The main novelty is that all decisions (even the activities selection) are taken in run-time considering the actual parameters of the execution, so the business process is managed in an efficient and flexible way. As an example, a complex and representative problem, the repair planning problem, is managed through the proposed approach.Ministerio de Ciencia e Innovación TIN2009-13714Junta de Andalucía P08-TIC-0409

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Anytime Cognition: An information agent for emergency response

    Get PDF
    Planning under pressure in time-constrained environments while relying on uncertain information is a challenging task. This is particularly true for planning the response during an ongoing disaster in a urban area, be that a natural one, or a deliberate attack on the civilian population. As the various activities pertaining to the emergency response need to be coordinated in response to multiple reports from the disaster site, a user finds itself cognitively overloaded. To address this issue, we designed the Anytime Cognition (ANTICO) concept to assist human users working in time-constrained environments by maintaining a manageable level of cognitive workload over time. Based on the ANTICO concept, we develop an agent framework for proactively managing a user’s changing information requirements by integrating information management techniques with probabilistic plan recognition. In this paper, we describe a prototype emergency response application in the context of a subset of the attacks devised by the American Department of Homeland Security

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment

    Integrated Solution Support System for Water Management

    Get PDF
    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework Directive (WFD). The WFD requires an integrated approach in water management to achieve good ecological status of all water bodies. It consists amongst others of the following main planning stages: describing objectives, assessing present state, identifying gaps between objectives and present state, developing management plan, implementing measures and evaluating their impacts. The directive prescribes broad participation and consultation to achieve its objectives. Besides the obvious desktop software, such an integrated approach can benefit from using a variety of support tools. In addition to tools for specific tasks such as numerical models and questionnaires, knowledge bases on options and process support tools may be utilized. Water stress, defined as the lack of water of appropriate quality is one issue related to, but not specifically addressed by the WFD. However, like in the WFD, a participatory approach could be used to mitigate water stress. Similarly various tools can or need to be used in such a complex process. In the AquaStress Integrated project the Integrated Solution Support System (I3S ¿ I-triple-S) is developed. One of the cornerstones of the approach taken in AquaStress is that organizing available knowledge provides sufficient information to improve the possibility to make a water stress mitigation process truly end-user driven, meaning that dedicated local information is only collected after specific need is expressed by the stakeholders in the process. The novelty of the I3S lies in the combination of such knowledge stored in knowledge-bases, with adaptable workflow management facilities and with specific task-oriented tools ¿ all originating from different sources. This paper describes the I3S
    corecore