99,271 research outputs found

    A comparative study of multiple-criteria decision-making methods under stochastic inputs

    Get PDF
    This paper presents an application and extension of multiple-criteria decision-making (MCDM) methods to account for stochastic input variables. More in particular, a comparative study is carried out among well-known and widely-applied methods in MCDM, when applied to the reference problem of the selection of wind turbine support structures for a given deployment location. Along with data from industrial experts, six deterministic MCDM methods are studied, so as to determine the best alternative among the available options, assessed against selected criteria with a view toward assigning confidence levels to each option. Following an overview of the literature around MCDM problems, the best practice implementation of each method is presented aiming to assist stakeholders and decision-makers to support decisions in real-world applications, where many and often conflicting criteria are present within uncertain environments. The outcomes of this research highlight that more sophisticated methods, such as technique for the order of preference by similarity to the ideal solution (TOPSIS) and Preference Ranking Organization method for enrichment evaluation (PROMETHEE), better predict the optimum design alternative

    An Iterative Co-Saliency Framework for RGBD Images

    Full text link
    As a newly emerging and significant topic in computer vision community, co-saliency detection aims at discovering the common salient objects in multiple related images. The existing methods often generate the co-saliency map through a direct forward pipeline which is based on the designed cues or initialization, but lack the refinement-cycle scheme. Moreover, they mainly focus on RGB image and ignore the depth information for RGBD images. In this paper, we propose an iterative RGBD co-saliency framework, which utilizes the existing single saliency maps as the initialization, and generates the final RGBD cosaliency map by using a refinement-cycle model. Three schemes are employed in the proposed RGBD co-saliency framework, which include the addition scheme, deletion scheme, and iteration scheme. The addition scheme is used to highlight the salient regions based on intra-image depth propagation and saliency propagation, while the deletion scheme filters the saliency regions and removes the non-common salient regions based on interimage constraint. The iteration scheme is proposed to obtain more homogeneous and consistent co-saliency map. Furthermore, a novel descriptor, named depth shape prior, is proposed in the addition scheme to introduce the depth information to enhance identification of co-salient objects. The proposed method can effectively exploit any existing 2D saliency model to work well in RGBD co-saliency scenarios. The experiments on two RGBD cosaliency datasets demonstrate the effectiveness of our proposed framework.Comment: 13 pages, 13 figures, Accepted by IEEE Transactions on Cybernetics 2017. Project URL: https://rmcong.github.io/proj_RGBD_cosal_tcyb.htm

    Two Procedures for Robust Monitoring of Probability Distributions of Economic Data Streams induced by Depth Functions

    Full text link
    Data streams (streaming data) consist of transiently observed, evolving in time, multidimensional data sequences that challenge our computational and/or inferential capabilities. In this paper we propose user friendly approaches for robust monitoring of selected properties of unconditional and conditional distribution of the stream basing on depth functions. Our proposals are robust to a small fraction of outliers and/or inliers but sensitive to a regime change of the stream at the same time. Their implementations are available in our free R package DepthProc.Comment: Operations Research and Decisions, vol. 25, No. 1, 201

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page
    • …
    corecore