28 research outputs found

    Integrated network reconstruction, visualization and analysis using YANAsquare

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modeling of metabolic networks includes tasks such as network assembly, network overview, calculation of metabolic fluxes and testing the robustness of the network.</p> <p>Results</p> <p>YANAsquare provides a software framework for rapid network assembly (flexible pathway browser with local or remote operation mode), network overview (visualization routine and YANAsquare editor) and network performance analysis (calculation of flux modes as well as target and robustness tests). YANAsquare comes as an easy-to-setup program package in Java. It is fully compatible and integrates the programs YANA (translation of gene expression values into flux distributions, metabolite network dissection) and Metatool (elementary mode calculation). As application examples we set-up and model the phospholipid network in the phagosome and genome-scale metabolic maps of <it>S.aureus</it>, <it>S.epidermidis </it>and <it>S.saprophyticus </it>as well as test their robustness against enzyme impairment.</p> <p>Conclusion</p> <p>YANAsquare is an application software for rapid setup, visualization and analysis of small, larger and genome-scale metabolic networks.</p

    FBA-SimVis: interactive visualization of constraint-based metabolic models

    Get PDF
    Summary: FBA-SimVis is a VANTED plug-in for the constraint-based analysis of metabolic models with special focus on the visual exploration of metabolic flux data resulting from model analysis. The program provides a user-friendly environment for model reconstruction, constraint-based model analysis, and interactive visualization of the simulation results. With the ability to quantitatively analyse metabolic fluxes in an interactive and visual manner, FBA-SimVis supports a comprehensive understanding of constraint-based metabolic flux models in both overview and detail

    Enhancing Elementary Flux Modes analysis using filtering techniques in an integrated environment

    Get PDF
    Publicado em "Advances in bioinformatics : 4th International Workshop on Practical Applications of Computational Biology and Bioinformatics 2010 (IWPACBB 2010)", ISBN 978-3-642-13213-1Elementary Flux Modes (EFMs) have been claimed as one of the most promising approaches for pathway analysis. These are a set of vectors that emerge from the stoichiometric matrix of a biochemical network through the use of convex analysis. The computation of all EFMs of a given network is an NP-hard problem and existing algorithms do not scale well. Moreover, the analysis of results is difficult given the thousands or millions of possible modes generated. In this work, we propose a new plugin, running on top of the OptFlux Metabolic Engineering workbench, whose aims are to ease the analysis of these results and explore synergies among EFM analysis, phenotype simulation and strain optimization.The authors wish to thank the financial support of the Portuguese FCT for the Ph.D grant SFRH/BD/61465/2009 and the company Dupont under the scope of the Dupont European University Support Program Award

    FAME, the Flux Analysis and Modeling Environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The creation and modification of genome-scale metabolic models is a task that requires specialized software tools. While these are available, subsequently running or visualizing a model often relies on disjoint code, which adds additional actions to the analysis routine and, in our experience, renders these applications suboptimal for routine use by (systems) biologists.</p> <p>Results</p> <p>The Flux Analysis and Modeling Environment (FAME) is the first web-based modeling tool that combines the tasks of creating, editing, running, and analyzing/visualizing stoichiometric models into a single program. Analysis results can be automatically superimposed on familiar KEGG-like maps. FAME is written in PHP and uses the Python-based PySCeS-CBM for its linear solving capabilities. It comes with a comprehensive manual and a quick-start tutorial, and can be accessed online at <url>http://f-a-m-e.org/</url>.</p> <p>Conclusions</p> <p>With FAME, we present the community with an open source, user-friendly, web-based "one stop shop" for stoichiometric modeling. We expect the application will be of substantial use to investigators and educators alike.</p

    Aspergillus fumigatus challenged by human dendritic cells: metabolic and regulatory pathway responses testify a tight battle

    Get PDF
    Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other

    LucidDraw: Efficiently visualizing complex biochemical networks within MATLAB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biochemical networks play an essential role in systems biology. Rapidly growing network data and versatile research activities call for convenient visualization tools to aid intuitively perceiving abstract structures of networks and gaining insights into the functional implications of networks. There are various kinds of network visualization software, but they are usually not adequate for visual analysis of complex biological networks mainly because of the two reasons: 1) most existing drawing methods suitable for biochemical networks have high computation loads and can hardly achieve near real-time visualization; 2) available network visualization tools are designed for working in certain network modeling platforms, so they are not convenient for general analyses due to lack of broader range of readily accessible numerical utilities.</p> <p>Results</p> <p>We present LucidDraw as a visual analysis tool, which features (a) speed: typical biological networks with several hundreds of nodes can be drawn in a few seconds through a new layout algorithm; (b) ease of use: working within MATLAB makes it convenient to manipulate and analyze the network data using a broad spectrum of sophisticated numerical functions; (c) flexibility: layout styles and incorporation of other available information about functional modules can be controlled by users with little effort, and the output drawings are interactively modifiable.</p> <p>Conclusions</p> <p>Equipped with a new grid layout algorithm proposed here, LucidDraw serves as an auxiliary network analysis tool capable of visualizing complex biological networks in near real-time with controllable layout styles and drawing details. The framework of the algorithm enables easy incorporation of extra biological information, if available, to influence the output layouts with predefined node grouping features.</p

    OptFlux: an open-source software platform for in silico metabolic engineering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.</p> <p>Results</p> <p><it>OptFlux </it>is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.</p> <p><it>OptFlux </it>also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms.</p> <p>The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. <it>OptFlux </it>has a visualization module that allows the analysis of the model structure that is compatible with the layout information of <it>Cell Designer</it>, allowing the superimposition of simulation results with the model graph.</p> <p>Conclusions</p> <p>The <it>OptFlux </it>software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community.</p> <p>Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.</p

    Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    Get PDF
    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.This work was supported by the National Institutes of Health, R01GM103502-05 to CD, ZH and DS. Partial support was also provided by grants from the Office of Science (BER), U.S. Department of Energy (DE-SC0004962), the Joslin Diabetes Center (Pilot & Feasibility grant P30 DK036836), the Army Research Office under MURI award W911NF-12-1-0390, National Institutes of Health (1RC2GM092602-01, R01GM089978 and 5R01DE024468), NSF (1457695), and Defense Advanced Research Projects Agency Biological Technologies Office (BTO), Program: Biological Robustness In Complex Settings (BRICS), Purchase Request No. HR0011515303, Program Code: TRS-0 Issued by DARPA/CMO under Contract No. HR0011-15-C-0091. Funding for open access charge: National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (R01GM103502-05 - National Institutes of Health; 1RC2GM092602-01 - National Institutes of Health; R01GM089978 - National Institutes of Health; 5R01DE024468 - National Institutes of Health; DE-SC0004962 - Office of Science (BER), U.S. Department of Energy; P30 DK036836 - Joslin Diabetes Center; W911NF-12-1-0390 - Army Research Office under MURI; 1457695 - NSF; HR0011515303 - Defense Advanced Research Projects Agency Biological Technologies Office (BTO), Program: Biological Robustness In Complex Settings (BRICS); HR0011-15-C-0091 - DARPA/CMO; National Institutes of Health)Published versio

    Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells

    Get PDF
    Background: Xenobiotics represent an environmental stress and as such are a source for antibiotics, including the isoquinoline (IQ) compound IQ-143. Here, we demonstrate the utility of complementary analysis of both host and pathogen datasets in assessing bacterial adaptation to IQ-143, a synthetic analog of the novel type N,C-coupled naphthyl-isoquinoline alkaloid ancisheynine. Results: Metabolite measurements, gene expression data and functional assays were combined with metabolic modeling to assess the effects of IQ-143 on Staphylococcus aureus, Staphylococcus epidermidis and human cell lines, as a potential paradigm for novel antibiotics. Genome annotation and PCR validation identified novel enzymes in the primary metabolism of staphylococci. Gene expression response analysis and metabolic modeling demonstrated the adaptation of enzymes to IQ-143, including those not affected by significant gene expression changes. At lower concentrations, IQ-143 was bacteriostatic, and at higher concentrations bactericidal, while the analysis suggested that the mode of action was a direct interference in nucleotide and energy metabolism. Experiments in human cell lines supported the conclusions from pathway modeling and found that IQ-143 had low cytotoxicity. Conclusions: The data suggest that IQ-143 is a promising lead compound for antibiotic therapy against staphylococci. The combination of gene expression and metabolite analyses with in silico modeling of metabolite pathways allowed us to study metabolic adaptations in detail and can be used for the evaluation of metabolic effects of other xenobiotics
    corecore