24,429 research outputs found

    Guest editorial for the special issue on software-defined radio transceivers and circuits for 5G wireless communications

    Get PDF
    Yichuang Sun, Baoyong Chi, and Heng Zhang, Guest Editorial for the Special Issue on Software-Defined Radio Transceivers and Circuits for 5G Wireless Communications, published in IEEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63 (1): 1-3, January 2016, doi: https://doi.org/10.1109/TCSII.2015.2506979.Peer reviewedFinal Accepted Versio

    A 3 Gb/s optical detector in standard CMOS for 850 nm optical communication

    Get PDF
    This paper presents a monolithic optical detector, consisting of an integrated photodiode and a preamplifier in a standard 0.18-/spl mu/m CMOS technology. A data rate of 3 Gb/s at BER <10/sup -11/ was achieved for /spl lambda/=850 nm with 25-/spl mu/W peak-peak optical power. This data rate is more than four times than that of current state-of-the-art optical detectors in standard CMOS reported so far. High-speed operation is achieved without reducing circuit responsivity by using an inherently robust analog equalizer that compensates (in gain and phase) for the photodiode roll-off over more than three decades. The presented solution is applicable to various photodiode structures, wavelengths, and CMOS generations

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-μm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-μm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    Phased Array Systems in Silicon

    Get PDF
    Phased array systems, a special case of MIMO systems, take advantage of spatial directivity and array gain to increase spectral efficiency. Implementing a phased array system at high frequency in a commercial silicon process technology presents several challenges. This article focuses on the architectural and circuit-level trade-offs involved in the design of the first silicon-based fully integrated phased array system operating at 24 GHz. The details of some of the important circuit building blocks are also discussed. The measured results demonstrate the feasibility of using integrated phased arrays for wireless communication and vehicular radar applications at 24 GHz

    High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Get PDF
    This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB
    corecore