50,573 research outputs found

    Semiconductor integrated circuit chip-to-chip interconnection scheme

    Full text link
    Integrated circuit chip-to-chip interconnections are made via gold pads on each chip that are bonded to corresponding gold pads on a silicon wafer chip carrier. The pads on the chips and/or the pads on the carrier are characterized by texturing (roughening) with a feature size of the order of a micrometer or less, so that each of the pads on the chip can be attached to each of the pads on the carrier by compression bonding at room temperature--i.e., cold-well bonding. In particular, the texturing of the gold pads on the silicon carrier is obtained by etching V-grooves locally on the surface of the underlying silicon carrier in the regions of the pads, thermally growing a silicon dioxide layer on the silicon carrier, and depositing the gold on the silicon dioxide layer.Published versio

    Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Get PDF
    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance

    A Carrier Signal Approach for Intermittent Fault Detection and Health Monitoring for Electronics Interconnections System

    Get PDF
    Abstract: Intermittent faults are completely missed out by traditional monitoring and detection techniques due to non-stationary nature of signals. These are the incipient events of a precursor of permanent faults to come. Intermittent faults in electrical interconnection are short duration transients which could be detected by some specific techniques but these do not provide enough information to understand the root cause of it. Due to random and non-predictable nature, the intermittent faults are the most frustrating, elusive, and expensive faults to detect in interconnection system. The novel approach of the author injects a fixed frequency sinusoidal signal into electronics interconnection system that modulates intermittent fault if persist. Intermittent faults and other channel effects are computed from received signal by demodulation and spectrum analysis. This paper describes technology for intermittent fault detection, and classification of intermittent fault, and channel characterization. The paper also reports the functionally tests of computational system of the proposed methods. This algorithm has been tested using experimental setup. It generate an intermittent signal by external vibration stress on connector and intermittency is detected by acquiring and processing propagating signal. The results demonstrate to detect and classify intermittent interconnection and noise variations due to intermittency. Monitoring the channel in-situ with low amplitude, and narrow band signal over electronics interconnection between a transmitter and a receiver provides the most effective tool for continuously watching the wire system for the random, unpredictable intermittent faults, the precursor of failure. - See more at: http://thesai.org/Publications/ViewPaper?Volume=6&Issue=12&Code=ijacsa&SerialNo=20#sthash.8RXsdW0t.dpu

    VLSI Architecture and Design

    Get PDF
    Integrated circuit technology is rapidly approaching a state where feature sizes of one micron or less are tractable. Chip sizes are increasing slowly. These two developments result in considerably increased complexity in chip design. The physical characteristics of integrated circuit technology are also changing. The cost of communication will be dominating making new architectures and algorithms both feasible and desirable. A large number of processors on a single chip will be possible. The cost of communication will make designs enforcing locality superior to other types of designs. Scaling down feature sizes results in increase of the delay that wires introduce. The delay even of metal wires will become significant. Time tends to be a local property which will make the design of globally synchronous systems more difficult. Self-timed systems will eventually become a necessity. With the chip complexity measured in terms of logic devices increasing by more than an order of magnitude over the next few years the importance of efficient design methodologies and tools become crucial. Hierarchical and structured design are ways of dealing with the complexity of chip design. Structered design focuses on the information flow and enforces a high degree of regularity. Both hierarchical and structured design encourage the use of cell libraries. The geometry of the cells in such libraries should be parameterized so that for instance cells can adjust there size to neighboring cells and make the proper interconnection. Cells with this quality can be used as a basis for "Silicon Compilers"

    Bridging the Testing Speed Gap: Design for Delay Testability

    Get PDF
    The economic testing of high-speed digital ICs is becoming increasingly problematic. Even advanced, expensive testers are not always capable of testing these ICs because of their high-speed limitations. This paper focuses on a design for delay testability technique such that high-speed ICs can be tested using inexpensive, low-speed ATE. Also extensions for possible full BIST of delay faults are addresse

    Flexible and stretchable circuit technologies for space applications

    Get PDF
    Flexible and stretchable circuit technologies offer reduced volume and weight, increased electrical performance, larger design freedom and improved interconnect reliability. All of these advantages are appealing for space applications. In this paper, two example technologies, the ultra-thin chip package (UTCP) and stretchable moulded interconnect (SMI), are described. The UTCP technology results in a 60 µm thick chip package, including the embedding of a 20 µm thick chip, laser or protolithic via definition to the chip contacts and application of fan out metallization. Imec’s stretchable interconnect technology is inspired by conventional rigid and flexible printed circuit board (PCB) technology. Stretchable interconnects are realized by copper meanders supported by a flexible material e.g. polyimide. Elastic materials, predominantly silicone rubbers, are used to embed the conductors and the components, thus serving as circuit carrier. The possible advantages of these technologies with respect to space applications are discussed
    corecore