70,589 research outputs found

    An architecture for organisational decision support

    Get PDF
    The Decision Support (DS) topic of the Network Enabled Capability for Through Life Systems Engineering (NECTISE) project aims to provide organisational through-life decision support for the products and services that BAE Systems deliver. The topic consists of five streams that cover resource capability management, decision management, collaboration, change prediction and integration. A proposed architecture is presented for an Integrated Decision Support Environment (IDSE) that combines the streams to provide a structured approach to addressing a number of issues that have been identified by BAE Systems business units as being relevant to DS: uncertainty and risk, shared situational awareness, types of decision making, decision tempo, triggering of decisions, and support for autonomous decision making. The proposed architecture will identify how either individuals or groups of decision makers (including autonomous agents) would be utilised on the basis of their capability within the requirements of the scenario to collaboratively solve the decision problem. Features of the scenario such as time criticality, required experience level, the need for justification, and conflict management, will be addressed within the architecture to ensure that the most appropriate decision management support (system/naturalistic/hybrid) is provided. In addition to being reliant on a number of human factors issues, the decision making process is also reliant on a number of information issues: overload, consistency, completeness, uncertainty and evolution, which will be discussed within the context of the architecture

    Learning to Segment and Represent Motion Primitives from Driving Data for Motion Planning Applications

    Full text link
    Developing an intelligent vehicle which can perform human-like actions requires the ability to learn basic driving skills from a large amount of naturalistic driving data. The algorithms will become efficient if we could decompose the complex driving tasks into motion primitives which represent the elementary compositions of driving skills. Therefore, the purpose of this paper is to segment unlabeled trajectory data into a library of motion primitives. By applying a probabilistic inference based on an iterative Expectation-Maximization algorithm, our method segments the collected trajectories while learning a set of motion primitives represented by the dynamic movement primitives. The proposed method utilizes the mutual dependencies between the segmentation and representation of motion primitives and the driving-specific based initial segmentation. By utilizing this mutual dependency and the initial condition, this paper presents how we can enhance the performance of both the segmentation and the motion primitive library establishment. We also evaluate the applicability of the primitive representation method to imitation learning and motion planning algorithms. The model is trained and validated by using the driving data collected from the Beijing Institute of Technology intelligent vehicle platform. The results show that the proposed approach can find the proper segmentation and establish the motion primitive library simultaneously

    Situational awareness and safety

    Get PDF
    This paper considers the applicability of situation awareness concepts to safety in the control of complex systems. Much of the research to date has been conducted in aviation, which has obvious safety implications. It is argued that the concepts could be extended to other safety critical domains. The paper presents three theories of situational awareness: the three-level model, the interactive sub-systems approach, and the perceptual cycle. The difference between these theories is the extent to which they emphasise process or product as indicative of situational awareness. Some data from other studies are discussed to consider the negative effects of losing situational awareness, as this has serious safety implications. Finally, the application of situational awareness to system design, and training are presented

    Glance behaviours when using an in-vehicle smart driving aid : a real-world, on-road driving study

    Get PDF
    In-vehicle information systems (IVIS) are commonplace in modern vehicles, from the initial satellite navigation and in-car infotainment systems, to the more recent driving related Smartphone applications. Investigating how drivers interact with such systems when driving is key to understanding what factors need to be considered in order to minimise distraction and workload issues while maintaining the benefits they provide. This study investigates the glance behaviours of drivers, assessed from video data, when using a smart driving Smartphone application (providing both eco-driving and safety feedback in real-time) in an on-road study over an extended period of time. Findings presented in this paper show that using the in-vehicle smart driving aid during real-world driving resulted in the drivers spending an average of 4.3% of their time looking at the system, at an average of 0.43 s per glance, with no glances of greater than 2 s, and accounting for 11.3% of the total glances made. This allocation of visual resource could be considered to be taken from ‘spare’ glances, defined by this study as to the road, but off-centre. Importantly glances to the mirrors, driving equipment and to the centre of the road did not reduce with the introduction of the IVIS in comparison to a control condition. In conclusion an ergonomically designed in-vehicle smart driving system providing feedback to the driver via an integrated and adaptive interface does not lead to visual distraction, with the task being integrated into normal driving
    corecore