7,006 research outputs found

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    A reconfigurable hybrid intelligent system for robot navigation

    Get PDF
    Soft computing has come of age to o er us a wide array of powerful and e cient algorithms that independently matured and in uenced our approach to solving problems in robotics, search and optimisation. The steady progress of technology, however, induced a ux of new real-world applications that demand for more robust and adaptive computational paradigms, tailored speci cally for the problem domain. This gave rise to hybrid intelligent systems, and to name a few of the successful ones, we have the integration of fuzzy logic, genetic algorithms and neural networks. As noted in the literature, they are signi cantly more powerful than individual algorithms, and therefore have been the subject of research activities in the past decades. There are problems, however, that have not succumbed to traditional hybridisation approaches, pushing the limits of current intelligent systems design, questioning their solutions of a guarantee of optimality, real-time execution and self-calibration. This work presents an improved hybrid solution to the problem of integrated dynamic target pursuit and obstacle avoidance, comprising of a cascade of fuzzy logic systems, genetic algorithm, the A* search algorithm and the Voronoi diagram generation algorithm

    A layered architecture using schematic plans for controlling mobile robots

    Get PDF
    Robotic soccer is a way of putting different developments in intelligent agents into practice, including not only problems such as multi-agent planning and coordination, but also physical problems related to vision and communication subsystems. In this work, we present the design used as the basis for a multi-agent system, implemented for controlling a team of robots, having as main goal to facilitate the testing of new theories developed on reasoning, knowledge representation, planning, agent communication, among others Artificial Intelligence techniques. The implementation of the system was carried out following a three-layer architecture which consists of a reactive layer, an executive layer and a deliberative layer, each of which is associated with a different level of abstraction. This layered design allows to construct a functional system with basic services that can be tested and refined progressively. We will focus our explanation on the executive layer, responsible for sensorial processing and the execution of schematic plans.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    A BDI architecture for high level robot deliberation

    Get PDF
    In this work we present a BDI agent architecture used for high level reasoning agents that control mobile robots that play soccer. This architecture is build on top of layered system, where each of these layers is associated with a di®erent level of abstraction. The proposed approach allows the speci¯cation of declarative goal driven robot behavior, that uses sophisticated high level reasoning and reactivity when needed. The elements of mental components are studied with their interaction and their syntaxis and semantics are de¯ned.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    The Contribution of Society to the Construction of Individual Intelligence

    Get PDF
    It is argued that society is a crucial factor in the construction of individual intelligence. In other words that it is important that intelligence is socially situated in an analogous way to the physical situation of robots. Evidence that this may be the case is taken from developmental linguistics, the social intelligence hypothesis, the complexity of society, the need for self-reflection and autism. The consequences for the development of artificial social agents is briefly considered. Finally some challenges for research into socially situated intelligence are highlighted
    corecore