7 research outputs found

    Integrated Broadband MicroPhotonics Beamformer for Adaptive Nulling in Smart Antennas

    Get PDF
    This paper presents an integrated MicroPhotonic beamformer that processes RF-modulated optical signals to adaptively synthesise multiple broadband nulls in smart phased-array antennas, The beam former is designed to operate at centre frequency of 5.6 GHz with I GHz bandwidth. Designs of the different photonic and RF components are presented. Simulation results show that a 4-element MicroPhotonic broadband smart antenna beamformer operating in the 5.1-6,1- GHz range can generate three broadband nulls, with less than 1.121 0 beam squint

    Adaptive applications of OPTO-VLSI processors in WDM networks

    Get PDF
    Communication is an inseparable part of human life and its nature continues to evolve and improve. The advent of laser was a herald to the new possibilities in the communication world. In recent years technologies such as Wavelength Division Multiplexing (WDM) and Erbium Doped Fiber Amplifiers (EDFA) have afforded significant boost to the practice of optical communication. At the heart of this brave new world is the need to dynamically/ adaptively steer/route beams of light carrying very large amounts of data. In recent years many techniques have been proposed for this purpose by various researchers. In this study we have elected to utilise the beam-steering capabilities of Opto-VLSI processors to investigate band-pass filtering and channel equalisation as two possible and practical applications in WDM networks

    Opto-VLSI based WDM multifunction device

    Get PDF
    The tremendous expansion of telecommunication services in the past decade, in part due to the growth of the Internet, has made the development of high-bandwidth optical net-works a focus of research interest. The implementation of Dense-Wavelength Division Multiplexing (DWDM) optical fiber transmission systems has the potential to meet this demand. However, crucial components of DWDM networks – add/drop multiplexers, filters, gain equalizers as well as interconnects between optical channels – are currently not implemented as dynamically reconfigurable devices. Electronic cross-connects, the traditional solution to the reconfigurable optical networks, are increasingly not feasible due to the rapidly increasing bandwidth of the optical channels. Thus, optically transparent, dynamically reconfigurable DWDM components are important for alleviating the bottleneck in telecommunication systems of the future. In this study, we develop a promising class of Opto-VLSI based devices, including a dynamic multi-function WDM processor, combining the functions of optical filter, channel equalizer and add-drop multiplexer, as well as a reconfigurable optical power splitter. We review the technological options for all optical WDM components and compare their advantages and disadvantages. We develop a model for designing Opto-VLSI based WDM devices, and demonstrate experimentally the Opto-VLSI multi-function WDM device. Finally, we discuss the feasibility of Opto-VLSI WDM components in meeting the stringent requirements of the optical communications industry

    Opto-VLSI-based adaptive optical power splitter/combiner for next generation dynamic optical telecommunication networks

    Get PDF
    The demand for optical power splitters is growing globally, due to the rapid deployment of fibre-to-the-premises, optical metropolitan area network (MAN), and active optical cables for TV/Video signal transport. Optical splitters play an important role in passive optical network (PON) technology by enabling several hundred users to share one optical line terminal. However, current PONs, which use fixed optical power splitters, have limited reconfigurability particularly in adding/dropping users to/from an optical network unit. An adaptive optical power splitter (OPS) can dynamically reallocate the opticalpower in the entire network according to the real-time distribution of users and services, thus providing numerous advantages such as improve an optical network efficiency, scalability, and reliability. An adaptive OPS is also important for realizing self-healing ring-to-ring optical MAN, thus offering automatic communication recovery when line break occurs. In addition, future optical line protection systems will require adaptive optical splitters to switch optical signals from faulty lines to active power lines, avoid the use of optical attenuators and/or amplifiers, and achieve real time line monitoring. An adaptive OPS can also be incorporated in tunable optical dispersion compensators, optical attenuator and optical gain equalizer, and reconfigurable optical switches. This thesis proposes and demonstrates the principle of a novel Opto-VLSI-based adaptive optical splitter/combiner for next generation dynamic optical telecommunication networks. The proposed splitter structure enables an input optical power to be split adaptively into a larger number of output fibre ports, through optimized phase holograms driving the Opto-VLSI processor. The new adaptive optical splitter has additional advantages including lossless operation, adequate inter-port crosstalk, compressed hardware and simple user interface. This thesis demonstrates, in particular, the concept of an adaptive optical power splitter employing an Opto-VLSI processor and a 4-f imaging system experimentally in three stages as follow: (i) a 1Ă—2 adaptive optical power splitter based on an Opto-VLSI processor, a fibre collimator array and 4-f imaging systems (single lens), (ii) a 1Ă—4 adaptive optical power splitter based on an Opto-VLSI processor, a fibre array and 4-f imaging systems (single lens), and (iii) a 1Ă—N lossless adaptive optical power splitter structure integrating an Opto-VLSI processor, optical amplifiers, a fibre array, and an array of 4-f imaging systems (lens array). The thesis also demonstrates the concept of an adaptive optical signal combiner which enables multiple signals to be combined with user-defined weight profiles into a single fibre port. Experimental results demonstrate that an input optical signal can arbitrarily be split into N signals and coupled into optical fibre ports by uploading optimized multicasting phase holograms onto the Opto-VLSI processor. They also demonstrate that N input optical signals can be dynamically combined with arbitrary weights into a single optical fibre port. Excellent agreement between theoretical and experimental results is demonstrated. The total insertion loss of the optical power splitter is only 5 dB. Results also show that the optical amplifiers can compensate for the insertion and splitting losses, thus enabling lossless splitter operation. A crosstalk level around -25 dB and a wavelength spectral range exceeding 40 nm is experimentally realized. In addition, a novel broadband adaptive RF power splitter/combiner based on Opto-VLSI processor is proposed and experimentally demonstrated. By uploading optimized multicasting phase holograms onto the software-driven Opto-VLSI processor, the input RF signal is dynamically split and directed to different output ports, with userdefined splitting ratios. Also, multiple input RF signals can be dynamically combined with arbitrary user-defined weights. As a proof-of-concept demonstration, two input RF signals are dynamically combined with different user-defined weight profiles. We also propose and demonstrate a photonic microwave filter based on the use of an Opto-VLSI-based adaptive optical combiner. The experimental results demonstrate that the developed Opto-VLSI-based adaptive optical combiner can dynamically route multiple input optical signals to a single output, with user-defined weight profiles, thus realising a tunable microwave filter. Overall this Opto-VLSI-based adaptive optical power splitter should allow as many as 32 output ports to be supported while achieving high splitting resolution and dynamic range. This will greatly enhance the efficiency of optical communication networks

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology

    An introduction to InP-based generic integration technology

    Get PDF
    Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.Funding is acknowledged by the EU-projects ePIXnet, EuroPIC and PARADIGM and the Dutch projects NRC Photonics, MEMPHIS, IOP Photonic Devices and STW GTIP. Many others have contributed and the authors would like to thank other PARADIGM and EuroPIC partners for their help in discussions, particularly Michael Robertson (CIP).This is the final published version distributed under a Creative Commons Attribution License. It can also be viewed on the publisher's website at: http://iopscience.iop.org/0268-1242/29/8/08300

    Integrated broadband microphotonic beamformer for adaptive nulling in smart antennas

    No full text
    The tremendous growth of the wireless communications sector and the problem of limited available spectrum that can be used to cater the wireless demand have spurred the need for better data transmission capacity and signal rates for wireless communication systems. Smart antennas are the promising technology for improving the wireless communication systems performance. Smart antennas are system that consist of antenna arrays capable of adaptively adjusting the beam pattern, thereby enhancing the desired signals (beam steering) and suppressing the interference signals (null steering), which is also known as Space Division Multiple Access (SDMA). SDMA systems allow significant improvement in the area of capacity, signal bandwidth, signal-to-interference ratio, and frequency reuse. Due to the increasing complexity of the smart antennas system, innovations and improvements in miniaturisation, power consumption, and cost are needed. These breakthroughs could be achieved by combining the microelectronic and photonic technologies, leading to an innovative software-driven broadband MicroPhotonic beamforming system. This thesis presents a doctoral study of integrated MicroPhotonic smart antenna beamformers. The beamformers presented in this study is based on microminiaturisation of hotonic and electronic components, which processes RF-modulated optical signals and adaptively synthesises multiple broadband null for interference suppression. Two types of beamformer are investigated in this thesis; the first form is based on delaying the input RF signal via discrete, high-resolution true-time delay (TTD) through the use of free space optics. The second type is based on continuous TTD generation using an Opto-VLSI processor in conjunction with high-dispersive optical fibres. Design, simulation and proof-of-concept demonstration of some of the photonic building blocks and RF components of smart antennas that employ the MicroPhotonic beamformer are presented. These smart antennas are designed for use in adaptive broadband phased-array antenna applications including multimedia wireless transmission and RADAR
    corecore