16,045 research outputs found

    Improving the Delivery of Key Work Supports: Policy & Practice Opportunities at a Critical Moment

    Get PDF
    Examines the consequences of a lack of coordination and seamless service delivery across support programs. Outlines policy, procedural, and data utilization options and best practices to expedite receipt of benefits across programs, as well as challenges

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    Food Risks and Type I & II Errors

    Get PDF
    The IFAMR is published by (IFAMA) the International Food and Agribusiness Management Review. www.ifama.orgFood safety, food defense, error based disruption, control oriented supply networks, Agribusiness, Food Consumption/Nutrition/Food Safety, Food Security and Poverty, Risk and Uncertainty, Q130,

    Verification and Diagnostics Framework in ATLAS Trigger/DAQ

    Full text link
    Trigger and data acquisition (TDAQ) systems for modern HEP experiments are composed of thousands of hardware and software components depending on each other in a very complex manner. Typically, such systems are operated by non-expert shift operators, which are not aware of system functionality details. It is therefore necessary to help the operator to control the system and to minimize system down-time by providing knowledge-based facilities for automatic testing and verification of system components and also for error diagnostics and recovery. For this purpose, a verification and diagnostic framework was developed in the scope of ATLAS TDAQ. The verification functionality of the framework allows developers to configure simple low-level tests for any component in a TDAQ configuration. The test can be configured as one or more processes running on different hosts. The framework organizes tests in sequences, using knowledge about components hierarchy and dependencies, and allowing the operator to verify the functionality of any subset of the system. The diagnostics functionality includes the possibility to analyze the test results and diagnose detected errors, e.g. by starting additional tests and understanding reasons of failures. A conclusion about system functionality, error diagnosis and recovery advice are presented to the operator in a GUI. The current implementation uses the CLIPS expert system shell for knowledge representation and reasoning.Comment: Paper for the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003 (presented as poster). Format: PDF, using MSWord template, 5 pages, 6 figures. PSN TUGP00

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t
    corecore