7 research outputs found

    Integrating Peridynamics with Material Point Method for Elastoplastic Material Modeling

    Get PDF
    © Springer Nature Switzerland AG 2019. We present a novel integral-based Material Point Method (MPM) using state based peridynamics structure for modeling elastoplastic material and fracture animation. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. To alleviate these problems, we integrate the strain metric in the basic elastic constitutive model by using material point truss structure, which outweighs differential-based methods in both accuracy and stability. To model plasticity, we incorporate our constitutive model with deviatoric flow theory and a simple yield function. It is straightforward to handle the problem of cracking in our hybrid framework. Our method adopts two time integration ways to update crack interface and fracture inner parts, which overcome the unnecessary grid duplication. Our work can create a wide range of material phenomenon including elasticity, plasticity, and fracture. Our framework provides an attractive method for producing elastoplastic materials and fracture with visual realism and high stability

    Variational Bonded Discrete Element Method with Manifold Optimization

    Full text link
    This paper proposes a novel approach that combines variational integration with the bonded discrete element method (BDEM) to achieve faster and more accurate fracture simulations. The approach leverages the efficiency of implicit integration and the accuracy of BDEM in modeling fracture phenomena. We introduce a variational integrator and a manifold optimization approach utilizing a nullspace operator to speed up the solving of quaternion-constrained systems. Additionally, the paper presents an element packing and surface reconstruction method specifically designed for bonded discrete element methods. Results from the experiments prove that the proposed method offers 2.8 to 12 times faster state-of-the-art methods

    Integral-based Material Point Method and Peridynamics Model For Animating Elastoplastic Material

    Get PDF
    This paper exploits the use of Material Point Method (MPM) for graphical animation of elastoplastic materials and fracture. Previous partial derivative based MPM studies face challenges of underlying instability issues of particle distribution and the complexity of modeling discontinuities. This paper incorporates the state-based peridynamics structure with the MPM to alleviate these problems, which outweighs diferential-based methods in both accuracy and stability. The deviatoric flow theory and a simple yield function are incorporated to animate plasticity

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Integrating Peridynamics to Material Point Method for Modelling Solids and Fracture Dynamics in High Velocity Impact.

    No full text
    The desire for graphical methods to intuitively handle elastoplastic materials has grown hand in hand with the advances made in computer Graphics. Simulating physical materials with dynamic movements to photorealistic resolution is still one of the most crucial and challenging topics, especially involving fractures. Material Point Method (MPM) presents a strong approach for animating elastoplastic materials due to its natural support for arbitrarily large topological deformations and intrinsic collision handling. However, the partial derivative based MPM brings underlying instability issue of handling discontinuous particle distributions and requires computationally expensive treatments to separate broken pieces. The objective of this thesis is to pro- pose a novel MPM solver for robustly and intuitively animating scenarios containing fractures. We are inspired by Peridynamics (PD) which is oriented toward deformations with discontinuities. This study exploits the PD within the MPM scheme to mitigate the difficulties inherent in handling fractures. First, we propose an integral-based MPM by adopting a PD integral energy density function to the MPM weak form and following the standard MPM discretization scheme. Novel elastic, plastic, viscoelastic and fracture models encoding PD bond concepts are designed as constitutive models. The integral-based MPM out-weighs the differential-based MPM in both accuracy and stability. To efficiently model myriad fragments with a MPM solver (especially in high speed impact scenarios), our second contribution is to formulate a rigorous coupling governing equation which integrates the state-based PD within the MPM scheme (Superposition- based MPM) that features an automatic fractures modelling scheme. In SPB-MPM, PD evolves as a result of failure evolution in critical regions while the MPM derives entire problem domain. Giving a low-overhead PD computation to the MPM, this method allows for simulating a breadth of fracture effects, including ductile and brittle fractures. The prominent features at high strain rate in high velocity impact are unattainable through general constitutive models. Our third contribution is to introduce a shock wave effects model and a metallic plastic model which are designed to capture the intricate and characteristic impact behaviours. We simulate a number of representative impact scenarios, including organic fruits, metallic materials and multi-material deformable objects, demonstrating the efficacy of our models
    corecore