4 research outputs found

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Modified PSO based PID Sliding Mode Control using Improved Reaching Law for Nonlinear systems

    Full text link
    In this paper, a new model based nonlinear control technique, called PID (Proportional-Integral-Derivative) type sliding surface based sliding mode control is designed using improved reaching law. To improve the performance of the second order nonlinear differential equations with unknown parameters modified particle swarm intelligent optimization (MPSO) is used for the optimized parameters. This paper throws light on the sliding surface design, on the proposed power rate exponential reaching law, parameters optimization using modified particle swarm optimization and highlights the important features of adding an integral term in the sliding mode such as robustness and higher convergence, through extensive mathematical modeling. Siding mode control law is derived using Lyapunov stability approach and its asymptotic stability is proved mathematically and simulations showing its validity. MPSO PID-type Sliding mode control will stabilize the highly nonlinear systems, will compensate disturbances and uncertainty and reduces tracking errors. Simulations and experimental application is done on the non-linear systems and are presented to make a quantitative comparison.Comment: arXiv admin note: substantial text overlap with arXiv:2207.1112

    Design of Sliding Mode PID Controller with Improved reaching laws for Nonlinear Systems

    Full text link
    In this thesis, advanced design technique in sliding mode control (SMC) is presented with focus on PID (Proportional-Integral-Derivative) type Sliding surfaces based Sliding mode control with improved power rate exponential reaching law for Non-linear systems using Modified Particle Swarm Optimization (MPSO). To handle large non-linearities directly, sliding mode controller based on PID-type sliding surface has been designed in this work, where Integral term ensures fast finite convergence time. The controller parameter for various modified structures can be estimated using Modified PSO, which is used as an offline optimization technique. Various reaching law were implemented leading to the proposed improved exponential power rate reaching law, which also improves the finite convergence time. To implement the proposed algorithm, nonlinear mathematical model has to be decrypted without linearizing, and used for the simulation purposes. Their performance is studied using simulations to prove the proposed behavior. The problem of chattering has been overcome by using boundary method and also second order sliding mode method. PI-type sliding surface based second order sliding mode controller with PD surface based SMC compensation is also proposed and implemented. The proposed algorithms have been analyzed using Lyapunov stability criteria. The robustness of the method is provided using simulation results including disturbance and 10% variation in system parameters. Finally process control based hardware is implemented (conical tank system)
    corecore