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In this paper, finite-time stabilization problem for a class of nonlinear differential-algebraic systems (NDASs) subject to external
disturbance is investigated via a composite control manner. A composite finite-time controller (CFTC) is proposed with a three-
stage design procedure. Firstly, based on the adding a power integrator technique, a finite-time control (FTC) law is explicitly
designed for the nominal NDAS by only using differential variables. Then, by using homogeneous system theory, a continuous
finite-time disturbance observer (CFTDO) is constructed to estimate the disturbance generated by an exogenous system. Finally, a
composite controller which consists of a feedforward compensation part based on CFTDO and the obtained FTC law is proposed.
Rigorous analysis demonstrates that not only the proposed composite controller can stabilize the NDAS in finite time, but also
the proposed control scheme exhibits nominal performance recovery property. Simulation examples are provided to illustrate the
effectiveness of the proposed control approach.

1. Introduction

Differential-algebraic systems (DASs) [1–3] known as sin-
gular systems [4–7], descriptor systems [8–10], or implicit
systems [11] represent an important class of systems. Because
DASs provide a more general representation than normal
systems in the sense of modelling, many practical systems,
such as power systems, robot systems, and economic systems,
are beyond the description of normal systems but can be
described byDASs [4]. Hence, the analysis and control design
problems of DASs have attracted a lot of attention from the
engineering and academic fields in the past several decades.
However, most existing work focus on linear DASs; see [4–
6, 11–14] and the references therein.

Nonlinear DASs (NDASs) characterize a class of rather
complex systems, which not only have nonlinearities but
also have singular nature of algebraic constraints. Therefore,
compared to linear DASs, the investigation of NDASs is
more difficult. As far as the control problem for NDASs is
concerned, only a few results are available in the literature.
Under the assumption that nonlinear differential-algebraic

equations can be described by a nonlinear control system
on a smooth manifold, the feedback stabilization problem of
NDASs was addressed in [15]. For a class of affine nonlinear
singular systems, the feedback control problem and exact
linearization approach were considered in [7]. By using the
feedback linearization approach, the feedback stabilization
problem for a class of NDASs was solved in [7]. By linear
matrix inequality technique, the work [16] considered the
stability and the damping control design problems for a class
of NDASs. Based on backstepping technique [17], a robust
controller design method was proposed for a class of NDASs.
It is known to all that disturbances widely exist in practical
control systems and bring negative effects to the control
performance of these systems. Disturbance attenuation is of
great importance in the control system design [11, 18–23]. In
[10], 𝐻∞ control problem for a class of nonlinear descrip-
tor systems was studied, and the necessary and sufficient
condition was derived for the solvability of the problem. By
using Hamiltonian function method, the stabilization and𝐻∞ control problems for a class of NDASs were addressed
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in [24]. For a general class of nonlinear singular systems
subjected to external disturbance, the work [25] removed
the normalizability assumption and proposed a complete
solution of output regulation problems. By using internal
model approach, robust output regulation problem for a
class of nonlinear singular systems subjected to disturbance
was investigated in [26]. In order to enhance the distur-
bance rejection ability of NDASs, a composite hierarchical
antidisturbance control method was proposed for a class
of nonlinear singular systems with multiple disturbances in
[27]. It should be pointed out that almost all the existing
results about the control problem of NDASs mentioned
above only concern the asymptotic stability which means
convergence with an infinite settling time.

Under a finite-time controller, the closed-loop usually
demonstrates not only faster convergence rate but also higher
accuracy as well as better disturbance rejection properties
[28–31]. In view of these advantages, at present, more and
more interest has been focused on the system control and
design problems by using FTC technique [32–38]. However,
most of the finite-time stabilization results available in the
literature are only applicable to normal control systems.
Due to the inherent characteristics of NDASs, the finite-
time stabilization problems of NDASs are more challeng-
ing. Recently, an energy based approach was proposed to
study the finite-time stabilization and finite-time𝐻∞ control
problems of a class of nonlinear Hamiltonian descriptor
systems in [9]. For a NDAS subjected to nonvanishing
disturbance, the issue of how to design a controller such that
the corresponding closed-loop system is finite-time stable has
not been addressed.

In this paper, we will consider the finite-time stabilization
problem for a class of NDASs subject to external distur-
bance. To deal with this problem, motivated by the recently
developed disturbance observer based control technique [18,
22, 23, 39, 40], a composite control approach is obtained
by using the adding a power integrator technique [41] and
homogeneous system theory [42]. It is shown that under
the proposed composite controller the corresponding closed-
loop system is finite time stable even in the presence of the
nonvanishing external disturbance.The block diagram of the
proposed composite control scheme is described by Figure 1.
The general design procedure of the composite controller is
given according to the following steps. Firstly, when there
is no disturbance in NDAS, under some mild conditions,
a nominal FTC law is designed recursively by using the
adding a power integrator technique. Due to the domination
nature of the adopted method, the algebraic variables are not
needed to be solved from the algebraic constraints explicitly,
and only differential variables are involved in the proposed
nominal FTC law. Secondly, to estimate the disturbance,
a continuous finite-time disturbance observer (CFTDO) is
constructed based on homogeneous systems theory. It is
shown that under the proposed CFTDO the disturbance
can be estimated precisely in finite time. Finally, based on
the proposed nominal FTC law and the estimation of the
disturbance, a CFTC is constructed. Rigorous theoretical
analysis shows that the proposed CFTC will render the
closed-loop system finite-time stable even in the presence
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Figure 1: The block diagram of the proposed composite control
scheme.

of nonvanishing disturbance. With the proposed composite
control approach, the disturbance rejection ability of the sys-
tem is significantly improved without sacrificing the nominal
performance recovery property.

The remainder of the paper is organized as follows. In
the next section, the problem description is given. Section 3
presents the main result of this paper including the design
of nominal FTC law, CFTO, and the CFTC for the NDAS.
In Section 4, the effectiveness of the proposed control algo-
rithm is testified by employing a simulation example. Some
concluding remarks are included in Section 5. Appendices A
and B collect the preliminaries and the proofs of several key
propositions, respectively.

2. Problem Description

Consider the following NDASs:

𝑥̇𝑖 = 𝑥𝑖+1 + 𝜙𝑖 (𝑥, 𝑧) , 𝑖 = 1, . . . , 𝑛 − 1,
𝑥̇𝑖 = 𝑢 + 𝜙𝑖 (𝑥, 𝑧) + 𝑑, (1a)

0 = 𝜑𝑖 (𝑥𝑖, 𝑧𝑖) , 𝑖 = 1, . . . , 𝑛, (1b)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛 is a vector of differential vari-
ables, 𝑧 = (𝑧1, . . . , 𝑧𝑛)𝑇 ∈ R𝑛 is a vector of algebraic variables,𝑢 ∈ R is the control input, 𝑑 ∈ R is the external disturbance,
respectively; 𝑥𝑖 = (𝑥𝑖, . . . , 𝑥2, 𝑥1)𝑇 and 𝑧𝑖 = (𝑧𝑖, . . . , 𝑧2, 𝑧1)𝑇,𝑖 = 1, . . . , 𝑛, 𝜙𝑖, 𝑖 = 1, . . . , 𝑛, are continuous nonlinear
functions, and nonlinear functions 𝜑𝑖 ∈ C1, 𝑖 = 1, . . . , 𝑛.
Assume that the origin is an isolated equilibrium point: that
is, 𝜙𝑖(0, 0) = 0, 𝜑𝑖(0, 0) = 0, 𝑖 = 1, . . . , 𝑛.

For NDASs (1a) and (1b), it is supposed that the distur-
bance 𝑑 is generated by the following exogenous system:

̇𝜂 = 𝐴𝜂 + 𝐵𝜃,
𝑑 = 𝐶𝜂, (2)

where 𝜂 = [ 𝜂1𝜂2 ], the matrices 𝐴 = [ 0 1𝑎1 𝑎2 ], 𝐵 = [ 01 ], and 𝐶 =[1 0], and 𝑎1 and 𝑎2 are known constants while the constant𝜃 is not assumed to be known, which means that 𝑑 may be a
type of nonvanishing disturbance.
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Remark 1. In many cases, the disturbance is considered to
be generated by a continuous ecosystem [18, 19, 25–27]. It
can be verified that, with different parameters 𝑎1, 𝑎2, and𝜃, (2) can be used to describe a wide class of disturbances,
such as constant disturbance [22], ramp disturbance [20],
harmonic disturbance [18], and polynomial disturbance [21].
It is well known that the existence of disturbance will bring
bad effects to practical engineering system.Therefore, it is no
doubt that if the disturbances 𝑑 can be estimated precisely in
finite time, then use its estimation 𝑑 to compensate it by using
proper feedback control. The obtained composite feedback
control will enhance the disturbance rejection ability as well
as increase control precision of the considered control system.

The control objective is to design a composite controller
for NDASs (1a) and (1b) such that the closed-loop system is
finite-time stable even in the presence of disturbance.

To solve the finite-time stabilization problem of NDASs
(1a) and (1b), the following two assumptions are needed.

Assumption 2. There are two constants 𝜏1 ∈ (−1/𝑛, 0) and𝜏2 ≥ 0 such that
󵄨󵄨󵄨󵄨𝜙𝑖󵄨󵄨󵄨󵄨 ≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟𝑖

+ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑖) , 𝑖 = 1, . . . , 𝑛, (3)

with
𝑟1 = 1,
𝑟𝑖 = 𝑟𝑖−1 + 𝜏1, 𝑖 = 2, . . . , 𝑛 + 1,

𝑚1 = 1,
𝑚𝑖 = 𝑚𝑖−1 + 𝜏2, 𝑖 = 2, . . . , 𝑛,

(4)

where 𝑐𝑖(𝑥𝑖) ≥ 0 is a known C1 function.

Remark 3. In the literature, most of the results for NDASs
are obtained based on the assumption that the nonlinear
functions need to meet smooth conditions [2, 3, 7–10, 15–
17, 22, 25, 26] or Lipschitz conditions [27, 43]. However, it
is observed that, from Assumption 2, the nonlinear terms𝑓𝑖, 𝑖 = 1, . . . , 𝑛 in system (1a) may violate these two condi-
tions, which means that (1a) and (1b) may be a non-Lipschitz
continuous system [44, 45]. Obviously, system (1a) and (1b)
under Assumption 2 can be used to describe a more general
class of NDASs.

Assumption 4. There exist a positive constant 𝑐2𝑖 and a C1

function 𝑏𝑖(𝑥𝑖) ≥ 0 such that

𝜕𝑔𝑖 (⋅)𝜕𝑧𝑖 ≥ 𝑐2𝑖 > 0,
󵄨󵄨󵄨󵄨𝑔𝑖 (0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)󵄨󵄨󵄨󵄨 ≤ 𝑏𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑚𝑖/𝑟1 + ⋅ ⋅ ⋅

+ 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑖 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚𝑖−1) ,
𝑖 = 1, . . . , 𝑛.

(5)

For the simplicity, we assume that 𝜏1 = 𝑞1/𝑝1 and 𝜏2 =𝑞2/𝑝2 with 𝑞1 and 𝑞2 being even integers and 𝑝1 and 𝑝2 being
odd integers. Under this assumption, 𝑟𝑖 and𝑚𝑖 will always be
odd in both denominator and numerator.

Remark 5. For Assumption 4, the following two points need
to be explained.

(i) The condition 𝜕𝜑𝑖(⋅)/𝜕𝑧𝑖 ̸= 0, 𝑖 = 1, . . . , 𝑛 in As-
sumption 4 allows us to infer the NDAS behavior to some
extent from results on normal systems [2]. In fact, if we define𝜑(𝑥, 𝑧) = [𝜑1, . . . , 𝜑𝑛]𝑇, and Ω = {(𝑥, 𝑧) ∈ R2𝑛 : 0 = 𝜑(𝑥, 𝑧)},
then it follows fromAssumption 4 that the Jacobian of 𝜑(𝑥, 𝑧)
with respect to 𝑧 has full rank on Ω; that is, NDASs (1a)
and (1b) are index one, which can guarantee that the NDASs
(1a) and (1b) are impulse free and have at least one solution
for any consistent initial conditions (𝑥(0), 𝑧(0)) satisfying𝜑(𝑥(0), 𝑧(0)) = 0.

(ii) Based on Assumption 4, we have

0 = 𝑔𝑖 (𝑧𝑖, 𝑥𝑖) = 𝑔𝑖 (𝑧𝑖, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)
= 𝑔𝑖 (𝑧𝑖, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖) − 𝑔𝑖 (0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)

+ 𝑔𝑖 (0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)
= ∫1
0

𝜕𝑔𝑖 (𝜆𝑧𝑖, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)𝜕𝑧𝑖 𝑑𝜆𝑧𝑖
+ 𝑔𝑖 (0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖) .

(6)

It follows from (6) that∫1
0
(𝜕𝑔𝑖(𝜆𝑧𝑖, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)/𝜕𝑧𝑖)𝑑𝜆𝑧𝑖 =−𝑔𝑖(0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖). According to (5), it can be shown that

𝑐2𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0

𝜕𝑔𝑖 (𝜆𝑧𝑖, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)𝜕𝑧𝑖 𝑑𝜆𝑧𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨−𝑔𝑖 (0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)󵄨󵄨󵄨󵄨 ≤ 𝑏𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑚𝑖/𝑟1 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑖 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚𝑖−1) .

(7)

This implies that the following inequality holds:

󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨 ≤ ̌𝑐2𝑖𝑐2𝑖 (
󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑚𝑖/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑖 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚1 + ⋅ ⋅ ⋅

+ 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚𝑖−1) ≤ 𝑏𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑚𝑖/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑖
+ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚𝑖−1)

(8)

with 𝑏𝑖(𝑥𝑖) = 𝑏𝑖(𝑥𝑖)/𝑐2𝑖. This means that the algebraic variable𝑧𝑖 could be bounded by homogeneous-like polynomial.
With the help of Assumption 4, we are able to handle

a wide class of NDASs. It is obvious that when NDASs (1a)
and (1b) are of index one, by implicit function theorem, there
exists a function ℎ(𝑥) so that 𝑧 = ℎ(𝑥). However, there are
many NDASs whose algebraic constraints could represent
severe nonlinearities. In this condition, the algebraic variables
might not be solved explicitly from the nonlinear algebraic
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constraints, but they could be bounded by homogeneous-
like polynomials. For example, consider the following NDAS
without disturbance:

𝑥̇ = 𝑢 + sin (𝑥) 𝑧,
𝑔 (𝑧, 𝑥) = 5𝑧 + 3 sin 𝑧 + 2𝑥3 = 0. (9)

It can be easily proved that 𝜕𝑔(𝑧, 𝑥)/𝜕𝑧 ̸= 0. But it is
difficult to solve 𝑧 explicitly from the nonlinear algebraic con-
strains 𝑔(𝑧, 𝑥). In fact, according to the nonlinear algebraic𝑔(𝑧, 𝑥) = 0, we have

5 |𝑧| = 󵄨󵄨󵄨󵄨󵄨−3 sin 𝑧 − 2𝑥3󵄨󵄨󵄨󵄨󵄨 ≤ 3 |sin (𝑧)| + 2 |𝑥|3
≤ 3 |𝑧| + 2𝑥2 |𝑥| . (10)

It is can be easily deduced from (10) that

|𝑧| ≤ 𝑏 (𝑥) |𝑥| . (11)

with 𝑏(𝑥) = 𝑥2, which is in the form of (5).

3. Composite Controller Design and
Stability Analysis

In this section, we will focus on solving the finite-time stabi-
lization problem of NDASs (1a) and (1b) with the disturbance
generated by the exogenous system (2). The detailed design
and analysis procedure is divided into three parts, and wewill
present it step by step.

3.1. Part I: Nominal FTC Law Design for NDASs (1a) and (1b).
In this part, we will propose the nominal FTC law design
method forNDASs (1a) and (1b)without considering external
disturbance. Based on this nominal FTC law, in what follows,
a composite controller will be constructed to enhance the
disturbance rejection ability and the accuracy of the closed-
loop system.

Theorem 6. Consider NDASs (1a) and (1b) without external
disturbance; if Assumptions 2 and 4 hold, then there exists a
FTC law rendering system (1a) and (1b) finite-time stable.

Proof. The proof of this theorem will be carried out in an
inductive argumentmanner whichwill enable us to construct
a C1 Lyapunov function and a C0 virtual control law at each
step.

Initial Step. For system (1a) and (1b), choose Lyapunov func-
tion𝑉1(𝑥1) = ∫𝑥1

0
(𝑠1/𝑟1 −0)2−𝜏1−𝑟1𝑑𝑠. The time derivative of𝑉1

along the trajectory of (1a) and (1b) is

𝑉̇1 (𝑥1) = 𝑥(2−𝜏1−𝑟1)/𝑟11 (𝑥2 + 𝜙1 (𝑥, 𝑧, 𝑢)) . (12)

By Assumption 4, we have |𝑧1|(𝑟1+𝜏1)/𝑚1 ≤ 𝑏(𝑟1+𝜏1)/𝑚11 (𝑥1) ⋅|𝑥1|(𝑟1+𝜏1)/𝑟1 . It follows from Assumption 2 that |𝜙1(𝑥, 𝑧)| ≤𝑑1(𝑥1)|𝑥1|(𝑟1+𝜏1)/𝑟1 with 𝑑1(𝑥1) = 𝑐1(𝑥1)(1 + 𝑏(𝑟1+𝜏1)/𝑚11 (𝑥1)).

Hence,

𝑉̇1 (𝑥1)
≤ 𝑥(2−𝜏1−𝑟1)/𝑟11 (𝑥2 − 𝑥∗2 + 𝑥∗2 + 𝑑1 (𝑥1) 𝑥(𝑟1+𝜏1)/𝑟11 ) . (13)

Clearly, the virtual control law 𝑥∗2 defined by 𝑥∗2 = −(𝑛 +𝑑1(𝑥1))𝑥𝑟2/𝑟11 fl −𝛽1(𝑥1)𝑥𝑟2/𝑟11 , where 𝛽1(𝑥1) is a smooth, non-
negative function, leads to

𝑉̇1 (𝑥1) ≤ −𝑛𝑥2/𝑟11 + 𝑥(2−𝜏1−𝑟1)/𝑟11 (𝑥2 − 𝑥∗2 ) . (14)

Inductive Step. Suppose at step 𝑖 − 1 that there exist a C1

Lyapunov function 𝑉𝑖−1(𝑥𝑖−1), which is positive definite and
homogeneous with respect to the dilation (𝑟1, 𝑟2, . . . , 𝑟𝑖−1),
and a set of C0 virtual control laws 𝑥∗1 , . . . , 𝑥∗𝑖 , defined by

𝑥∗1 = 0,
𝜉1 = 𝑥1/𝑟11 − 𝑥∗1/𝑟11 ,
𝑥∗𝑘 = −𝛽𝑘−1 (𝑥𝑘−1) 𝜉𝑟𝑘𝑘−1,
𝜉𝑘 = 𝑥1/𝑟𝑘

𝑘
− 𝑥∗1/𝑟𝑘
𝑘

,
𝑘 = 2, . . . , 𝑖,

(15)

with smooth functions 𝛽1(⋅) > 0, . . . , 𝛽𝑖−1(⋅) > 0, such that

𝑉̇𝑖−1 (𝑥𝑖−1) ≤ − (𝑛 − 𝑖 + 2) 𝑖−1∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑖−1𝑖−1 (𝑥𝑖 − 𝑥∗𝑖 ) . (16)

We claim that (16) still holds at step 𝑖. To prove this claim,
we consider the Lyapunov function

𝑉𝑖 (𝑥𝑖) = 𝑉𝑖−1 (𝑥𝑖−1) + 𝑊𝑖 (𝑥𝑖) , (17)

with 𝑊𝑖(𝑥𝑖) = ∫𝑥𝑖
𝑥∗𝑖
(𝑠1/𝑟𝑖 − 𝑥∗1/𝑟𝑖𝑖 )2−𝜏1−𝑟𝑖𝑑𝑠. By using a similar

method in [45], it can be proved that the Lyapunov function
(17) is a C1 positive definite function.

Taking the derivative of the Lyapunov function 𝑉𝑖 along
system (1a) and (1b) yields

𝑉̇𝑖 (𝑥𝑖) ≤ − (𝑛 − 𝑖 + 2) 𝑖−1∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑖−1𝑖−1 (𝑥𝑖 − 𝑥∗𝑖 )

+ 𝑖−1∑
𝑘=1

𝜕𝑊𝑖𝜕𝑥𝑘 𝑥̇𝑘 +
𝜕𝑊𝑖𝜕𝑥𝑖 𝑥̇𝑖

= − (𝑛 − 𝑖 + 2) 𝑖−1∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑖−1𝑖−1 (𝑥𝑖 − 𝑥∗𝑖 )

+ 𝜉2−𝜏1−𝑟𝑖𝑖 (𝑥∗𝑖+1 + 𝜙𝑖 (⋅)) + 𝑖−1∑
𝑘=1

𝜕𝑊𝑖𝜕𝑥𝑘 𝑥̇𝑘
+ 𝜉2−𝜏1−𝑟𝑖𝑖 (𝑥𝑖+1 − 𝑥∗𝑖+1)

(18)

with a virtual control law 𝑥∗𝑖 to be determined later.
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To proceed further, we need to estimate each term of the
right hand side of (18). For the second term in (18), based on
the fact 𝑟𝑖 ≤ 1 and Lemmas A.6 and A.7, it can be shown that
there exists a constant 𝑎1 > 0 such that

𝜉2−𝜏1−𝑟𝑖−1𝑖−1 (𝑥𝑖 − 𝑥∗𝑖 )
≤ 󵄨󵄨󵄨󵄨𝜉𝑖−1󵄨󵄨󵄨󵄨2−𝜏1−𝑟𝑖−1 󵄨󵄨󵄨󵄨󵄨󵄨(𝑥1/𝑟𝑖𝑖 )𝑟𝑖 − (𝑥∗(1/𝑟𝑖)𝑖 )𝑟𝑖 󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜉𝑖−1󵄨󵄨󵄨󵄨2−𝜏1−𝑟𝑖−1 21−𝑟𝑖 󵄨󵄨󵄨󵄨󵄨𝑥1/𝑟𝑖𝑖 − 𝑥∗(1/𝑟𝑖)𝑖

󵄨󵄨󵄨󵄨󵄨𝑟𝑖
= 󵄨󵄨󵄨󵄨𝜉𝑖−1󵄨󵄨󵄨󵄨2−𝜏1−𝑟𝑖−1 21−𝑟𝑖 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨𝑟𝑖 ≤ 13𝜉2𝑖−1 + 𝑎1𝜉2𝑖 .

(19)

To estimate the third term and the fourth termof the right
hand side of inequality (18), the following propositions are
introduced, the proofs of which are included in Appendix B.

Proposition 7.There exists aC∞ function 𝑎2(𝑥𝑖) > 0 such that
𝜉(2𝜇−𝜏1−𝑟𝑖)/𝜇𝑖 𝜙𝑖 (⋅) ≤ 12 (𝜉21 + 𝜉22 + ⋅ ⋅ ⋅ + 𝜉2𝑖−2) + 13𝜉2𝑖−1

+ 𝑎2 (𝑥𝑖) 𝜉2𝑖 .
(20)

Proposition 8.There exists a smooth function 𝑎3(𝑥𝑖) > 0 such
that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖−1∑
𝑘=1

𝜕𝑊𝑖𝜕𝑥𝑘 𝑥̇𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

12 (𝜉21 + 𝜉22 + ⋅ ⋅ ⋅ + 𝜉2𝑖−2) + 13𝜉2𝑖−1
+ 𝑎3 (𝑥𝑖) 𝜉2𝑖 .

(21)

Substituting the estimates (19), (B.3), and (21) into (18)
yields

𝑉̇𝑖 (𝑥𝑖)
≤ − (𝑛 − 𝑖 + 1) 𝑖−1∑

𝑘=1

𝜉2𝑘
+ 𝜉2−𝜏1−𝑟𝑖𝑖 (𝑥∗𝑖+1 + (𝑎1 + 𝑎2 (𝑥𝑖) + 𝑎3 (𝑥𝑖)) 𝜉𝑟𝑖+𝜏1𝑖 )
+ 𝜉2−𝜏1−𝑟𝑖𝑖 (𝑥𝑖+1 − 𝑥∗𝑖+1) .

(22)

Clearly, if the virtual control law is chosen as

𝑥∗𝑖+1 = −𝛽𝑖𝜉𝑟𝑖+𝜏1𝑖
= − (𝑛 − 𝑖 + 1 + 𝑎1 + 𝑎2 (𝑥𝑖) + 𝑎3 (𝑥𝑖)) 𝜉𝑟𝑖+𝜏1𝑖 , (23)

then we have

𝑉̇𝑖 (𝑥𝑖) ≤ − (𝑛 − 𝑖 + 1) 𝑖∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑖𝑖 (𝑥𝑖+1 − 𝑥∗𝑖+1) . (24)

This completes the inductive proof.
By the inductive argument, it is obvious that (16) still

holds as 𝑖 = 𝑛. That is, at the last step, we are able to design

a C1 Lyapunov function 𝑉𝑛(𝑥𝑛), and a C0 virtual control law𝑥∗𝑛+1 = −𝛽𝑛(𝑥𝑛)𝜉𝑟𝑛+𝜏1𝑛 such that

𝑉̇𝑛 (𝑥𝑛) ≤ − 𝑛∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑛𝑛 (𝑢 − 𝑥∗𝑛+1) . (25)

By Definition A.3 and Lemma A.4, it can be shown that
the homogeneous degree of 𝑉𝑛 and ∑𝑛𝑘=1 𝜉2𝑘 are 2 − 𝜏1 and 2
with respect to the delation (𝑟1, . . . , 𝑟𝑛), respectively. By using
Lemma A.4 again, there exists a positive constant 𝑐0 such that∑𝑛𝑘=1 𝜉2𝑘 ≥ 𝑐0𝑉2/(2−𝜏1)𝑛 .

Obviously, if we choose

𝑢 = 𝑥∗𝑛+1 = −𝛽𝑛 (𝑥𝑛) 𝜉𝑟𝑛+𝜏1𝑛 = −𝛽𝑛 (𝑥𝑛) (𝑥1/𝑟𝑛𝑛
+ 𝛽𝑛−1 (𝑥𝑛−1) (𝑥1/𝑟𝑛−1𝑛−1 + ⋅ ⋅ ⋅
+ 𝛽2 (𝑥2) (𝑥1/𝑟22 + 𝛽1 (𝑥1) 𝑥1) ⋅ ⋅ ⋅))𝑟𝑛+𝜏1 ,

(26)

then by using Lemma A.6, we have

𝑉̇𝑛 (𝑥𝑛) ≤ − 𝑛∑
𝑘=1

𝜉2𝑘 ≤ −𝑐0𝑉2/(2−𝜏1)𝑛 . (27)

Note that 𝜏1 < 0; thus, 2/(2 − 𝜏1) ∈ (0, 1). By Lemma A.2,
the states of subsystem (1a) will converge to the origin in finite
time; that is, there exists a time constant 𝑇1 such that 𝑥𝑖(𝑡) ≡0, 𝑖 = 1, . . . , 𝑛, ∀𝑡 ≥ 𝑇1.

Based on this and Assumption 4, let 𝑡 ≥ 𝑇1; it follows
from |𝑧1| ≤ 𝑏1(𝑥1)|𝑥1|𝑚1/𝑟1 that 𝑧1 ≡ 0 as 𝑡 ≥ 𝑇1. And then
based on the fact 𝑥1 ≡ 0, 𝑥2 ≡ 0, 𝑧1 ≡ 0 as 𝑡 ≥ 𝑇1, and|𝑧2| ≤ 𝑏2(𝑥2)(|𝑥1|𝑚2/𝑟1 + |𝑥2|𝑚2/𝑟2 + |𝑧1|𝑚2/𝑚1), we have 𝑧2 ≡ 0
as 𝑡 ≥ 𝑇1. Proceeding in the same line, it can be shown that𝑧1 ≡ 0, . . . , 𝑧𝑛 ≡ 0, ∀𝑡 ≥ 𝑇1 step by step.

Therefore, it can be concluded that the closed-loop system
(1a) and (1b) and (26) are finite-time stable.

Remark 9. It is generally known that the selection of Lya-
punov function plays a central role in the control design
procedure. For NDAS in an alternative expression

𝐸𝑥̇ = 𝑓 (𝑥) , (28)

where 𝑥 ∈ R𝑛, 𝑓 : R𝑛 → R𝑛 is smooth enough and𝑓(0) = 0, and 𝐸 ∈ R𝑛×𝑛 is a singular matrix with rank(𝐸) =𝑟 < 𝑛. According to [10, 44], if NDAS (28) is index one,
then there exist two nonsingular matrices 𝑀,𝑁 ∈ R𝑛×𝑛

such that 𝑀𝐸𝑁 = [ 𝐼𝑟 0
0 0

]. That is, if we let 𝑥 = 𝑁𝑥, and
𝑀𝑓(𝑁𝑥) = [ 𝑓1(𝑥1 ,𝑥2)𝑓2(𝑥1 ,𝑥2)

], then system (28) is equivalent to the
system described by 𝑥̇1 = 𝑓1(𝑥1, 𝑥2), 0 = 𝑓2(𝑥1, 𝑥2), with𝑥1 ∈ R𝑟 and 𝑥2 ∈ R𝑛−𝑟. However, due to the inherent
mixed differential-algebraic structure for DASs, the selection
of Lyapunov function and the calculation of the derivative
of the Lyapunov function along the trajectory of the systems
are more difficult than those of the normal systems [22].
It is obvious that the finite-time stabilization problem of
NDAS (1a) and (1b) is not a trivial issue. To study the finite-
time stabilization problem of system (1a) and (1b) without
disturbance, our motivation is twofold.
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(i) From the energy perspective, the algebraic constraints
can be naturally regarded as the generalized internal energy
balance, so the algebraic constraints do not affect energy
balance between the system and external world [24]. And
in [10], it was pointed out that for the index one descriptor
system (28) only the part where 𝐸𝑥 ̸= 0 contributes to the
energy function.

(ii) To stabilize a linear singular system, it is sufficient to
finish this task by applying slow feedback [4].

Based on these two points and the merits of the adding a
power integrator technique, we have proved that it is feasible
to design Lyapunov function and FTC control law for NDAS
(1a) and (1b) by only using the differential variables.

In the absence of disturbance, Theorem 6 provides a
finite-time stabilization approach for NDASs (1a) and (1b).
However, in the presence of external disturbance, the pro-
posed control approach cannot guarantee that the states
of the system converge to the origin accurately in finite
time. Inspired by the recently developed disturbance observer
based control technique [18, 20, 22, 27], we will design a
continuous nonlinear disturbance observer such that the dis-
turbance can be estimated in finite time, and then combining
the proposed FTC law and the disturbance estimation a
CFTC will be given in the next part.

3.2. Part II: CFTDO Design. In this part, we will concentrate
on the CFTDO for system (1a) and (1b) by using homoge-
neous system theory.

Combining (1a) and (2), we define

𝑦1 = 𝑥𝑛,
𝑦2 = 𝜂1 − 𝑎2𝑦1,
𝑦3 = 𝜂2 − 𝑎2𝜂1 − 𝑎1𝑦1,
𝑦4 = 𝜃.

(29)

Based on (1a), (2), and (29), we get the derivatives of𝑦𝑗, 𝑗 = 1, . . . , 4 that
̇𝑦1 = 𝑦2 + 𝑓1,
̇𝑦2 = 𝑦3 + 𝑓2,
̇𝑦3 = 𝑦4 + 𝑓3,
̇𝑦4 = 0,

(30)

where the nonlinear functions
𝑓1 = 𝑎2𝑦1 + 𝜙𝑛 (𝑥, 𝑧) + 𝑢,
𝑓2 = 𝑎1𝑦1 − 𝑎2 (𝜙𝑛 (𝑥, 𝑧) + 𝑢) ,
𝑓3 = −𝑎1 (𝜙𝑛 (𝑥, 𝑧) + 𝑢) .

(31)

As 𝑎1, 𝑎2 are known constants, and 𝜙𝑛(𝑥, 𝑧) are known
nonlinear functions, it is obvious that 𝑓𝑖, 𝑖 = 1, 2, 3 are
known nonlinear terms.

Therefore, the CFTDOdesign problem of system (1a) and
(1b) is converted to the finite-time state observer for system
(30).

Lemma 10. For system (30), there exists a states observer in
the following form:

̇̂𝑦1 = 𝑦2 + 𝑓1 + 𝑘1 (𝑦1 − 𝑦1)𝛾2/𝛾1 ,
̇̂𝑦2 = 𝑦3 + 𝑓2 + 𝑘2 (𝑦1 − 𝑦1)𝛾3/𝛾1 ,
̇̂𝑦3 = 𝑦4 + 𝑓3 + 𝑘3 (𝑦1 − 𝑦1)𝛾4/𝛾1 ,
̇̂𝑦4 = 𝑘4 (𝑦1 − 𝑦1)𝛾5/𝛾1 ,

(32)

where 𝛾1 = 1, 𝛾𝑖 = 𝛾1 + (𝑖 − 1)𝜏3, 𝑖 = 2, 3, 4, 5, 𝜏3 ∈ (−1/4, 0),
and 𝑘𝑖, 𝑖 = 1, 2, 3, 4 are appropriate positive constants, such
that the states of system (30) can be estimated in finite time.

Proof. Let 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖, 𝑖 = 1, 2, 3, 4; then based on system
(30) and (32) the observe error system is obtained:

̇𝑒1 = 𝑒2 − 𝑘1𝑒𝛾2/𝛾11 ,
̇𝑒2 = 𝑒3 − 𝑘2𝑒𝛾3/𝛾11 ,
̇𝑒3 = 𝑒4 − 𝑘3𝑒𝛾4/𝛾11 ,
̇𝑒4 = −𝑘4𝑒𝛾5/𝛾11 .

(33)

According toTheorem 3.1 in [37], if we choose appropri-
ate constants 𝑘𝑖 > 0, 𝑖 = 1, 2, 3, 4; then system (33) is globally
finite-time stable. Thus, there exists a constant 𝑇2 > 0 such
that 𝑦𝑖 ≡ 𝑦𝑖, 𝑖 = 2, 3, 4, as 𝑡 ≥ 𝑇2.

According to (29) and (2), it is can be shown that

𝑑 = 𝑎2𝑦1 + 𝑦2 = 𝜂1,
̂̇𝑑 = 𝑦3 + 𝑎2𝜂1 + 𝑎1𝑦1 = 𝜂2,

∀𝑡 ≥ 𝑇2.
(34)

That is, both the disturbance 𝑑 and it is derivative ̇𝑑 can be
estimated in finite time.

Remark 11. To estimate disturbances, many available dis-
turbance observer design methods have been proposed in
the literature; for example, see [18–20, 23, 27] and the
reference therein. It should be pointed out that most of the
existing disturbance observer design approaches can achieve
asymptotic estimates of the disturbances only. To enhance
the disturbance rejection ability and control accuracy of the
system, it is necessary to develop the design method of finite
time disturbance observer, such that the disturbance can
be estimated in finite time. Under the assumption that the
disturbance is high-order differentiable and bounded, the
work [32] proposed a noncontinuous finite-time disturbance
observer design method by using high-order sliding mode
control technique. Different from [32], Lemma 10 proposes
a CFTDO design method under the assumption that distur-
bance is generated by an exogenous system.

With the help ofTheorem 6 and Lemma 10, we are able to
propose a finite-time stabilization approach for NDASs (1a)
and (1b) subject to disturbance.
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3.3. Part III: CFTC Design for NDASs (1a) and (1b). In this
part, we will propose a CFTC for NDASs (1a) and (1b)
with disturbance, and rigorous stability analysis will be given
to guarantee the finite-time stability of the corresponding
closed-loop system.

Theorem 12. Consider NDASs (1a) and (1b) subject to the dis-
turbance generated by the exogenous system (2); if Assumptions
2 and 4 hold, then under the controller

𝑢 = −𝛽𝑛 (𝑥𝑛) (𝑥1/𝑟𝑛𝑛 + 𝛽𝑛−1 (𝑥𝑛−1) (𝑥1/𝑟𝑛−1𝑛−1 + ⋅ ⋅ ⋅
+ 𝛽2 (𝑥2) (𝑥1/𝑟22 + 𝛽1 (𝑥1) 𝑥1) ⋅ ⋅ ⋅))𝑟𝑛+𝜏1 − 𝑑, (35)

the closed-loop system composed of (1a) and (1b) and (35) is
finite-time stable.

Proof. For NDASs (1a) and (1b) with disturbance, we choose
the same Lyapunov function 𝑉𝑛(𝑥𝑛) presented above. In the
same line as Theorem 6, we have

𝑉̇𝑛 (𝑥𝑛) ≤ − 𝑛∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑛𝑛 (𝑢 + 𝑑 − 𝑥∗𝑛+1) . (36)

By Definition A.3 and Lemma A.4, it can be shown that
the homogeneous degree of 𝑉𝑛 and ∑𝑛𝑘=1 𝜉2𝑘 are 2 − 𝜏1 and2 with respect to the delation (𝑟1, . . . , 𝑟𝑛), respectively. And
according to Lemma A.4, there exists a positive constant 𝑐0
such that ∑𝑛𝑘=1 𝜉2𝑘 ≥ 𝑐0𝑉2/(2−𝜏1)𝑛 .

Substituting (35) into inequality (36) andusing LemmaA.6
yield

𝑉̇𝑛 (𝑥𝑛) ≤ − 𝑛∑
𝑘=1

𝜉2𝑘 + 𝜉2−𝜏1−𝑟𝑛𝑛 (𝑑 − 𝑑)

≤ − 𝑛∑
𝑘=1

𝜉2𝑘 + 2 − 𝜏1 − 𝑟𝑛2 𝜉2𝑛
+ 𝜏1 + 𝑟𝑛2 󵄨󵄨󵄨󵄨󵄨𝑑 − 𝑑󵄨󵄨󵄨󵄨󵄨2/(𝜏1+𝑟𝑛)

≤ −𝜏1 + 𝑟𝑛2
𝑛∑
𝑘=1

𝜉2𝑘 + 𝜏1 + 𝑟𝑛2 󵄨󵄨󵄨󵄨󵄨𝑑 − 𝑑󵄨󵄨󵄨󵄨󵄨2/(𝜏1+𝑟𝑛)

≤ −𝜏1 + 𝑟𝑛2 𝑐0𝑉2/(2−𝜏1)𝑛

+ 𝜏1 + 𝑟𝑛2 󵄨󵄨󵄨󵄨󵄨𝑑 − 𝑑󵄨󵄨󵄨󵄨󵄨2/(𝜏1+𝑟𝑛) .

(37)

By the analysis and design procedure of the CFTDO, it
is easy to know that the observe error system (33) is global
finite-time stable. Thus, the states 𝑒𝑖, 𝑖 = 1, 2, 3, 4 are global
bounded. Based on this, and (29) and (34), it is obvious that𝑑 − 𝑑 is global bounded and 𝑑 − 𝑑 ≡ 0, ∀𝑡 > 𝑇2. Then,
by the definition of FTISS-Lyapunov function in [34], one
knows that 𝑉𝑛 is a FTISS-Lyapunov function of the closed-
loop system combined by (1a) and (35). By Lemma A.5, it
is obvious that the states of subsystem (1a) will converge to
the origin in finite time; that is, there exists a time constant𝑇3 ≥ 𝑇2 such that 𝑥𝑖(𝑡) ≡ 0, 𝑖 = 1, . . . , 𝑛, ∀𝑡 ≥ 𝑇3.

By using the similar method as that in Theorem 6, it
can be shown that 𝑧1 ≡ 0, . . . , 𝑧𝑛 ≡ 0, ∀𝑡 ≥ 𝑇3 one
by one. Therefore, it can be concluded that the NDAS (1)
can be stabilized by the composite controller (35) in a finite
time.

In order to facilitate the analysis and design, we assume
that every subsystem of differential system (1a) has a cor-
responding algebraic constraint equation for NDASs (1a)
and (1b). Note that, for some practical NDASs, parts of the
subsystems of differential system (1a) are allowed to not have
algebraic constraint equations. Without loss of generality, we
assume that the first 𝑛 − 𝑚 subsystems of differential system
(1a) have no corresponding algebraic constraint equations;
then (1b) becomes

0 = 𝜑𝑖 (𝑥𝑛−𝑚+𝑖, 𝑧𝑖) , 𝑖 = 1, . . . , 𝑚. (38)

To state the main result of the finite-time stabilization
problems of NDAS (1) when the algebraic system (1b) is
in the form of (38), the following two Assumptions which
can be seen as modified versions of Assumptions 2 and 4,
respectively, are needed.

Assumption 2∗. There are constants 𝜏1 ∈ (−1/𝑛, 0) and 𝜏2 ≥ 0
such that

󵄨󵄨󵄨󵄨𝜙𝑖󵄨󵄨󵄨󵄨 ≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟𝑖) ,
𝑖 = 1, . . . , 𝑛 − 𝑚,

󵄨󵄨󵄨󵄨󵄨𝜙𝑛−𝑚+𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐𝑛−𝑚+𝑗 (𝑥𝑛−𝑚+𝑗)(
𝑛−𝑚∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑛−𝑚+𝑗+𝜏1)/𝑟𝑖

+ 𝑗∑
𝑘=1

(󵄨󵄨󵄨󵄨𝑥𝑛−𝑚+𝑘󵄨󵄨󵄨󵄨(𝑟𝑛−𝑚+𝑗+𝜏1)/𝑟𝑛−𝑚+𝑘 + 󵄨󵄨󵄨󵄨𝑧𝑘󵄨󵄨󵄨󵄨(𝑟𝑛−𝑚+𝑗+𝜏1)/𝑚𝑘)) ,
𝑗 = 1, . . . , 𝑚,

(39)

where 𝑟𝑖 and 𝑚𝑖 are defined in Assumption 2, and 𝑐𝑖(𝑥𝑖) ≥ 0
is a known C1 function.

Assumption 4∗. There exist a positive constant 𝑐2𝑖 and a C1

function 𝑏𝑖(𝑥𝑛−𝑚+𝑖) ≥ 0 such that 𝜕𝑔𝑖(⋅)/𝜕𝑧𝑖 ≥ 𝑐2𝑖 > 0 and
󵄨󵄨󵄨󵄨𝑔𝑖 (0, 𝑧𝑖−1, . . . , 𝑧1, 𝑥𝑖)󵄨󵄨󵄨󵄨 ≤ 𝑏𝑖 (𝑥𝑛−𝑚+𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑚𝑖/𝑟1 + ⋅ ⋅ ⋅

+ 󵄨󵄨󵄨󵄨𝑥𝑛−𝑚󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑛−𝑚 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑛−𝑚+𝑖󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑛−𝑚+𝑖 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚1
+ ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚𝑖−1) , 𝑖 = 1, . . . , 𝑚.

(40)

Similar to the analysis of Remark 5, it is easy to show that
the following conclusion holds: if Assumption 4∗ holds, then
there exists a C1 function 𝑏𝑖(𝑥𝑛−𝑚+𝑖) such that

󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨 ≤ 𝑏𝑖 (𝑥𝑛−𝑚+𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑚𝑖/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑛−𝑚󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑛−𝑚 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝑥𝑛−𝑚+𝑖󵄨󵄨󵄨󵄨𝑚𝑖/𝑟𝑛−𝑚+𝑖 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨𝑚𝑖/𝑚𝑖−1) ,

𝑖 = 1, . . . , 𝑚.
(41)
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Based on Assumptions 2∗ and 4∗, in the same lines of
the proof of Theorems 6 and 12, the following results can be
obtained immediately.

Corollary 13. Consider NDASs (1a) and (1b) without external
disturbance; if Assumptions 2∗ and 4∗ hold, then under the
feedback control law (26) the corresponding closed-loop system
is finite-time stable.

Corollary 14. Consider NDASs (1a) and (1b) subject to the dis-
turbance generated by the exogenous system (2); if Assumptions
2∗ and 4∗ hold, then the composite controller (35) will stabilize
system (1) in finite time.

Remark 15. For simplicity, so far we have assumed that 𝜏𝑖 =−𝑝𝑖/𝑞𝑖, 𝑖 = 1, 2, where 𝑝𝑖 and 𝑞𝑖 represent even and odd
integers, respectively, such that 𝑟𝑖, 𝑚𝑖, 𝑖 = 1, . . . , 𝑛 + 1will be
odd in both denominator and numerator. In the case when𝜏𝑖 = −𝑝𝑖/𝑞𝑖, 𝑖 = 1, 2, where 𝑝𝑖 and 𝑞𝑖 are arbitrary real
positive numbers, inspired by [38, 46], we define the function[𝑠]𝑟 = sign(𝑠)|𝑠|𝑟 to preserve the sign of its variable in the
homogeneous finite-time disturbance observer and control
law, such that it is still possible to get the same result.

Remark 16. When there are no nonlinear algebraic con-
straints, the NDASs in (1a) and (1b) reduce to the following
normal nonlinear system with disturbance:

𝑥̇𝑖 = 𝑥𝑖+1 + 𝜙𝑖 (𝑥) , 𝑖 = 1, . . . , 𝑛 − 1,
𝑥̇𝑖 = 𝑢 + 𝜙𝑖 (𝑥) + 𝑑. (42)

In the absence of disturbance, the finite-time stabilization
problem of system (42) has been considered in [33, 46] under
different assumptions on nonlinear terms. In this regard, the
obtained results in this paper can be viewed as an extension
of existing results on normal nonlinear systems to NDASs.
Note that, in the presence of disturbance, the proposed
stabilization methods [33, 46] can only ensure that the states
of the closed-loop system converge to a neighborhood of the
origin. However, the obtained composite control method in
this paper can effectively enhance the disturbance rejection
ability and control accuracy of the system.

Remark 17 (nominal performance recovery ability). In the
absence of disturbance, it is derived from the observer error
system (33) that 𝑦2 = 𝑦3 = 𝑦4 = 0 and 𝑒𝑖 = 0, 𝑖 = 1, 2,3, 4 if the initial values of the observer states are selected as𝑦1(0) = 𝑥𝑛(0) and 𝑦2(0) = 𝑦3(0) = 𝑦4(0) = 0. In this
condition, the proposed composite controller (35) reduces to
the nominal FTC law (26), which demonstrates that the pro-
posed approach does not sacrifice the nominal performance.

4. Simulations

In this section, we will use a numerical example to illustrate
the validity of the proposed composite feedback stabilization
approach.

Example 18. Consider the following inherent NDAS:

𝑥̇1 = 𝑥2 + 0.2 sin (𝑥1) ,
𝑥̇2 = 𝑢 + 0.5 sin (𝑥2) 𝑧1/31 + 𝑑 (𝑡) ,
0 = 3𝑧1 + 𝑧31 − 5𝑥1,

(43)

where the disturbance is generated by exogenous system (2)
with 𝑎1 = −4, 𝑎2 = 0, 𝜃 = 0, and 𝑑(𝑡) = 𝜂1 = 0.8 sin(2𝑡).

First of all, it is worth mentioning that NDAS (43) is a
nonsmooth system because the system contains a nonlinear
term 𝜙2(𝑥, 𝑧) = 0.5 sin(𝑥2)𝑧1/31 . Obviously, the stabiliza-
tion method proposed by [27] does not apply to system
(43) because the nonlinear term 𝜙2(𝑥, 𝑧) does not meet
Lipschitz condition. The recent work [9] proposed a finite-
time stabilization for nonsmooth nonlinear Hamiltonian
descriptor system. However, the approach proposed by [9]
does not apply to system (43) too. How to design a finite-
time controller for system (43), there are no existing results
to utilise.

However, if we choose 𝑟1 = 1, 𝑚1 = 1, 𝜏1 = −2/9, and𝜏2 = 0, then 𝑟2 = 7/9, 𝑟3 = 5/9. It is easy to show that |𝜙1| =|0.2 sin(𝑥1)| ≤ 0.2|𝑥1|7/9. According to the nonlinear alge-
braic constraint𝜑1, we have 𝜕𝜑1(𝑧1, 𝑥1)/𝜕𝑧1 = 3+3𝑧21 ̸= 0 and𝜑1(0, 𝑥1) = −5𝑥1. Thus, |𝑧1| ≤ 5|𝑥1|/(3+𝑧21) ≤ (5/3)|𝑥1|. Fur-
thermore, by using Lemma A.6, it can be easily derived that𝜙2 = 0.5 sin(𝑥2)𝑧1/31 ≤ 0.5|𝑥2|2/7|𝑧1|3/9 ≤ (1/10)(2|𝑥2|5/7+3|(5/3)𝑧1|5/9) ≤ (1/2)(|𝑥2|5/7 + |𝑧1|5/9). Therefore, Assump-
tions 2∗ and 4∗ are satisfied. In the absence of external
disturbance, according to Corollary 13, the NDAS (43) can
be stabilized by the following FTC law:

𝑢 = −𝛽2 (𝑥9/72 + 𝛽1𝑥1)5/9 (44)

with appropriate gains 𝛽1 and 𝛽2.
In the presence of disturbance, according to Lemma 10

and Corollary 14, the following CFTC is designed for system
(43):

𝑢𝑐 = −𝛽2 (𝑥9/72 + 𝛽1𝑥1)5/9 − 𝑑, (45)

where 𝑑 = 𝑦2 is the estimation of the external disturbance
generated by the CFTDO

̇̂𝑦1 = 𝑦2 + (0.5 sin (𝑥2) 𝑧1/31 + 𝑢𝑐) + 𝑘1 (𝑥𝑛 − 𝑦1)𝛾2/𝛾1
̇̂𝑦2 = 𝑦3 − 4𝑥𝑛 + 𝑘2 (𝑥𝑛 − 𝑦1)𝛾3/𝛾1
̇̂𝑦3 = 4 (0.5 sin (𝑥2) 𝑧1/31 + 𝑢𝑐) + 𝑘3 (𝑥𝑛 − 𝑦1)𝛾4/𝛾1 ,

(46)

where 𝑘1, 𝑘2, and 𝑘3 are appropriate positive constants and𝛾1 = 1, 𝛾𝑖 = 𝛾1 + (𝑖 − 1)𝜏3, 𝑖 = 2, 3, 4 with 𝜏3 ∈ (−1/3, 0).
To evaluate the effectiveness of the proposed control

approach, FTC (44) and CFTC (45) for system (42) with
disturbance are employed in the simulation for the purpose of
comparison studies. The control parameters of the two con-
trol methods are listed in Table 1. The initial values of system
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Figure 2: Response curves of disturbance and its estimation (a) and estimation error (b).

Table 1: Control parameters for the numerical Example (43).

Controllers Parameters
FTC: 𝑢 𝛽1 = 2, 𝛽2 = 7
CFTC: 𝑢𝑐 𝛽1 = 2, 𝛽2 = 7, 𝑘1 = 10, 𝑘2 = 30, 𝑘3 = 60, 𝜏3 = −2/9

(43) and observer (46) are chosen as (𝑥1(0), 𝑥2(0), 𝑧1(0)) =(2.8, −3, 2) and (𝑦1(0), 𝑦2(0), 𝑦3(0)) = (−3, 0, 0), respectively.
The simulation results are shown in Figures 2 and 3.

It is observed from Figure 2 that the external disturbance
can be estimated quickly by the proposed CFTDO (46). The
states responses of the NDAS (43) under the two different
controls (44) and (45) are shown in Figures 3(a)–3(c), which
demonstrate that the FTC law (44) fails to stabilize NDAS
(43), while the composite controller (45) can make the states
of NDAS (43) converge to the origin precisely. The control
signals of the two different controls (44) and (45) are given in
Figure 3(d).

Example 19. Consider nonlinear circuit system displayed in
Figure 4, where a dc source with voltage 𝜇 is connected in
series to a linear resistor, a linear inductor, and a nonlinear
capacitor with a 𝑞-V characteristic 𝑞 = 𝑧(V) = (V − V0) + (V −
V0)3+𝑞0. Similar nonlinear capacitors areconsidered in [1, 22].

This circuit may be easily shown to admit the charge-flux
description

̇𝑞 = 𝜙
L
,

̇𝜙 = 𝜇 − 𝜙R
L

− V,
0 = (V − V0)3 + (V − V0) − (𝑞 − 𝑞0) ,

(47)

where 𝜙 is the magnetic flux in the inductor.

Define 𝑥 = [𝑥1, 𝑥2]𝑇 = [𝑞 − 𝑞0, 𝜙]𝑇, 𝑧1 = V − V0, and𝑢 = 𝜇 − V0. Assume that the system is subject to matched
disturbance 𝑑(𝑡) which is generated by exogenous system (2)
with 𝑎1 = −1, 𝑎2 = 0, and let L = 1, R = 1.5, V0 = 1, and𝑞0 = 0.5; then system (47) can be represented by the following
system:

𝑥̇1 = 𝑥2,
𝑥̇2 = 𝑢 − 1.5𝑥2 − 𝑧1 + 𝑑 (𝑡) ,
0 = 𝑧1 + 𝑧31 − 𝑥1.

(48)

However, if we choose 𝑟1 = 1, 𝑚1 = 1, and 𝜏1 = −2/7; then𝑟2 = 5/7, 𝑟3 = 3/7. According to the nonlinear algebraic
constraint 𝜑1, we have 𝜕𝜑1(𝑧1, 𝑥1)/𝜕𝑧1 = 1 + 3𝑧21 ̸= 0
and 𝜑1(0, 𝑥1) = 𝑥1. Thus, |𝑧1| ≤ |𝑥1|/(1 + 3𝑧21) ≤ |𝑥1|.
Furthermore, it is easy to show that |𝜙2| = | − 1.5𝑥2 − 𝑧1| ≤𝑏2(𝑥1, 𝑥2)(|𝑥1|3/7 + |𝑥2|3/5) with 𝑏2(𝑥1, 𝑥2) = |𝑥1|4/7 + 2|𝑥2|2/5.
Therefore, Assumptions 2∗ and 4∗ are satisfied. In the absence
of external disturbance, according to Corollary 13, the NDAS
(43) can be stabilized by the following FTC law:

𝑢 = − (10 + 𝑏2 (𝑥1, 𝑥2)) (𝑥7/52 + 2𝑥1)3/7 − 𝑑, (49)

where 𝑑 = 𝑦2 is the estimation of the external disturbance
generated by the CFTDO

̇̂𝑦1 = 𝑦2 + (𝑢 − 1.5𝑥2 − 𝑧1) + 𝑘1 (𝑥2 − 𝑦1)𝛾2/𝛾1 ,
̇̂𝑦2 = 𝑦3 − 𝑥2 + 𝑘2 (𝑥2 − 𝑦1)𝛾3/𝛾1 ,
̇̂𝑦3 = (𝑢 − 1.5𝑥2 − 𝑧1) + 𝑘3 (𝑥2 − 𝑦1)𝛾4/𝛾1 ,
̇̂𝑦4 = 𝑘4 (𝑥2 − 𝑦1)𝛾5/𝛾1 ,

(50)
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Figure 3: The response curves of system (43) under two different control FTC (44) (dotted line) and CFTC (45) (solid line). (a) State 𝑥1, (b)
state 𝑥2, (c) state 𝑧1, and (d) control input.
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Figure 4: Nonlinear RLC circuit.

where 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are appropriate positive constants,
and 𝛾1 = 1, 𝛾𝑖 = 𝛾1 + (𝑖 − 1)𝜏3, 𝑖 = 2, 3, 4 with 𝜏3 ∈ (−1/4, 0).

The simulation is conducted (𝑥1(0),𝑥2(0),𝑧1(0), 𝑦1(0), 𝑦2(0),𝑦3(0), 𝑦4(0)) = (2.5, −3, 2, −3, 0, 0, 0). The response curves of
the closed-loop systems (48)-(49) are shown in Figure 5.

5. Conclusion

The problem of composite finite-time stabilization problem
for a class of NDASs subject to external disturbance has been
considered. Homogeneous system theory and the adding

a power integrator technique have been adopted to the
analysis and design of continuous finite-time disturbance
observer and composite controller. It has been shown that
the proposed composite controller not only can stabilize
the NDAS with disturbance in finite time, but also has the
nominal performance recovery ability. The validity of the
proposed control approach has been demonstrated by two
examples.

Appendix

A. Preliminaries

In this section, we introduce some definitions and lemmas
which will be used throughout the paper.

Definition A.1 (see [28]). Consider a system

𝑥̇ = 𝑓 (𝑥) , 𝑓 (0) = 0, 𝑥 ∈ R
𝑛, (A.1)

where 𝑓(⋅) : D → R𝑛 is non-Lipschitz continuous on an
neighborhood D of the origin 𝑥 = 0 in R𝑛. The equilibrium
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Figure 5: Response curves of the closed-loop systems (48)-(49).

𝑥 = 0 of (A.1) is (locally) finite-time stable if there are an open
neighborhood U of the origin and a function 𝑇 : U \ {0} →[0,∞), such that every solution trajectory 𝑥(𝑡, 𝑥0) of system
(A.1) starting from the initial point 𝑥0 ∈ U \ {0} is well
defined and unique in forward time for 𝑡 ∈ [0, 𝑇(𝑥0)), and
lim𝑡→𝑇(𝑥0)𝑥(𝑡, 𝑥0) = 0. Here 𝑇(𝑥0) is called the convergence
time (of the initial state 𝑥0). The equilibrium of system (A.1)
is finite time stable if it is Lyapunov stable and finite-time
convergent. IfU = D = R𝑛, the origin is a globally finite-time
stable equilibrium.

Lemma A.2 (see [28]). Assume that there exists a continuous
function 𝑉(𝑥) : U → R such that the following conditions
hold:

(i) 𝑉(𝑥) is positive definite.
(ii) There exist real numbers 𝑐 > 0 and 𝛼 ∈ (0, 1) and

an open neighborhood U0 ⊂ U of the origin such that𝑉̇(𝑥) + 𝑐𝑉𝛼(𝑥) ≤ 0, 𝑥 ∈ U0 \ {0}.
Then the origin is a finite-time stable equilibrium of sys-
tem (A.1) and the finite convergence time 𝑇 satisfies 𝑇 ≤𝑉(𝑥(0))1−𝛼/𝑐(1 − 𝛼). If U = U0 = R𝑛 and 𝑉(𝑥) is proper, then
the origin is a globally finite time stable equilibrium of (A.1).

Definition A.3 (see [42]). For fixed coordinates (𝑥1, . . . , 𝑥𝑛) ∈
R𝑛 and real numbers 𝑟𝑖 > 0, 𝑖 = 1, . . . , 𝑛,

(i) the dilation Δ 𝜀(𝑥) = (𝜀𝑟1𝑥1, . . . , 𝜀𝑟𝑛𝑥𝑛), ∀𝜀 > 0, with𝑟𝑖 being called as the weights of the coordinates (for
simplicity of notation, we define dilation weight Δ =(𝑟1, . . . , 𝑟𝑛));

(ii) a function 𝑉 ∈ C(R𝑛,R) is said to be homogeneous
of degree 𝜏 if there is a real number 𝜏 ∈ R such that∀𝑥 ∈ R𝑛 \ {0}, 𝜀 > 0, 𝑉(Δ 𝜀(𝑥)) = 𝜀𝜏𝑉(𝑥1, . . . , 𝑥𝑛);

(iii) a vector field 𝑓 ∈ C(R𝑛,R𝑛) is said to be homoge-
neous of degree 𝜏 if there is a real number 𝜏 ∈ R such
that for 𝑖 = 1, . . . , 𝑛, ∀𝑥 ∈ R𝑛 \{0}, 𝜀𝑖 > 0, 𝑓𝑖(Δ 𝜀(𝑥)) =𝜀𝜏+𝑟𝑖𝑓𝑖(𝑥1, . . . , 𝑥𝑛);

(iv) a homogeneous 𝑝-norm is defined as ‖𝑥‖Δ,𝑝 =
(∑𝑚𝑖=1 |𝑥𝑖|𝑝/𝑟𝑖)1/𝑝, ∀𝑥 ∈ R𝑛, for a constant 𝑝 ≥ 1.

Lemma A.4 (see [28]). Suppose 𝑉 : R𝑛 → R is a homo-
geneous function of degree 𝜏 with respect to the dilation weightΔ. Then the following holds:

(i) 𝜕𝑉/𝜕𝑥𝑖 is homogeneous of degree 𝜏 − 𝑟𝑖 with 𝑟𝑖 being
the homogeneous weight of 𝑥𝑖.
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(ii) There is a constant 𝑐 such that𝑉(𝑥) ≤ 𝑐‖𝑥‖𝜏Δ.Moreover,
if𝑉(𝑥) is positive definite, 𝑐‖𝑥‖𝜏Δ ≤ 𝑉(𝑥) for a constant𝑐 > 0.

Lemma A.5 (see [34]). The system

𝑧̇ = 𝑓 (𝑧, V) , 𝑧 ∈ R
𝑛, V ∈ R

𝑚 (A.2)

with 𝑓(0, 0) = 0, is finite-time input-to-state stable (FTISS), if
it has an FTISS-Lyapunov function.

LemmaA.6 (see [45]). For any positive constants 𝑐, 𝑑 and any
real-valued function 𝜂(𝑥, 𝑦) > 0, the following inequality holds:

|𝑥|𝑐 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑑 ≤ 𝑐𝑐 + 𝑑𝜂 (𝑥, 𝑦) |𝑥|𝑐+𝑑
+ 𝑑𝑐 + 𝑑𝜂−𝑐/𝑑 (𝑥, 𝑦) 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨𝑐+𝑑 .

(A.3)

Lemma A.7 (see [38]). Let 𝑝 ∈ R≥1𝑜𝑑𝑑 and 𝑥, 𝑦 be real-valued
functions; then, for a constant 𝑐 > 0 the following inequalities
hold: 󵄨󵄨󵄨󵄨𝑥𝑝 − 𝑦𝑝󵄨󵄨󵄨󵄨 ≤ 𝑝 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 (𝑥𝑝−1 + 𝑦𝑝−1)

≤ 𝑐 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨(𝑥 − 𝑦)𝑝−1 + 𝑦𝑝−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥1/𝑝 − 𝑦1/𝑝󵄨󵄨󵄨󵄨󵄨 ≤ 21−1/𝑝 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨1/𝑝 .
(A.4)

B. The Proofs of Propositions

The proof of Propositions 7 and 8 are given in this section.
For the sake of simplicity, here we will use a generic constant𝑐 which exemplifies any limited positive constant value and𝑐𝑖(𝑥𝑖) represents smooth, nonnegative function, either of
which may be implicitly changed in different places.

Proof of Proposition 7. Note that 0 < (𝑟𝑗 + 𝜏1)/𝑚𝑗 < 1,𝑗 = 1, . . . , 𝑖; based on Assumption 4, inequality (7), and the
famous inequality (𝑎+𝑏)𝑐 ≤ 𝑎𝑐+𝑏𝑐, ∀𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ∈ (0, 1),
we have for 𝑗 = 1, . . . , 𝑖

󵄨󵄨󵄨󵄨󵄨𝑧𝑗󵄨󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑗 ≤ 𝑏𝑗 (𝑥𝑗)(𝑟𝑖+𝜏1)/𝑚𝑗 (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨󵄨𝑥𝑗󵄨󵄨󵄨󵄨󵄨(𝑟𝑗+𝜏1)/𝑟𝑗 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚1 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨󵄨𝑧𝑗−1󵄨󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑗−1) .

(B.1)

By using (B.1) and Assumption 2, it follows from (3) that

󵄨󵄨󵄨󵄨𝜙𝑖󵄨󵄨󵄨󵄨 ≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟𝑖
+ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚1 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚2 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑖)

≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟𝑖
+ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚1 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚2 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑖−1 + 𝑏𝑖 (𝑥𝑖)(𝑟𝑖+𝜏1)/𝑚𝑖 (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1

+ ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑗+𝜏1)/𝑟𝑖 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚1 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑖−1))

≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟𝑖
+ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚1 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚2 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝑧𝑖−1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑚𝑖−1)

...
≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨(𝑟𝑖+𝜏1)/𝑟𝑖)
= 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1 + 󵄨󵄨󵄨󵄨󵄨𝜉2 − 𝛽1 (𝑥1) 𝜉1󵄨󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨󵄨𝜉𝑖

− 𝛽𝑖−1 (𝑥𝑖−1) 𝜉𝑖−1󵄨󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1)
≤ 𝑐𝑖 (𝑥𝑖) (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1 + 󵄨󵄨󵄨󵄨𝜉2󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1) .

(B.2)

By (B.2) and LemmaA.6, it can be proved that there exists
a C∞ function 𝑎3(𝑥𝑖) > 0 such that

𝜉2−𝜏1−𝑟𝑖𝑖 𝜙𝑖 (⋅) ≤ 𝑐𝑖 (𝑥𝑖) 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨2−𝜏1−𝑟𝑖
⋅ (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1 + 󵄨󵄨󵄨󵄨𝜉2󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨𝑟𝑖+𝜏1)
≤ 12 (𝜉21 + 𝜉22 + ⋅ ⋅ ⋅ + 𝜉2𝑖−2) + 13𝜉2𝑖−1 + 𝑎3 (𝑥𝑖) 𝜉2𝑖 .

(B.3)

Proof of Proposition 8. By the definition of𝑊𝑖 andLemmaA.7,
it can be shown that for 𝑘 = 1, . . . , 𝑖 − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑊𝑖𝜕𝑥𝑘 𝑥̇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−

2 − 𝜏1 − 𝑟𝑖𝑟𝑖
𝜕𝑥∗1/𝑟𝑖𝑖𝜕𝑥𝑘

⋅ ∫𝑥𝑖
𝑥∗𝑖

(𝑠1/𝑟𝑖 − 𝑥∗1/𝑟𝑖𝑖 )1−𝜏1−𝑟𝑖 𝑑𝑠𝑥̇𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥∗𝑖 󵄨󵄨󵄨󵄨

⋅ 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨1−𝜏1−𝑟𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥∗1/𝑟𝑖𝑖𝜕𝑥𝑘 𝑥̇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨1−𝜏1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥∗1/𝑟𝑖𝑖𝜕𝑥𝑘 𝑥̇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(B.4)

By the definition of 𝑥∗𝑖 , we have 𝑥∗1/𝑟𝑖𝑖 = (−𝛽𝑖−1(𝑥𝑖−1))1/𝑟𝑖 ⋅𝜉𝑖−1 = 𝛽𝑖−1(𝑥𝑖−1)𝜉𝑖−1. It follows that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥∗1/𝑟𝑖𝑖𝜕𝑥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝛽𝑖−1𝜉𝑖−1𝜕𝑥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑐𝑖−1 (𝑥𝑖−1) 󵄨󵄨󵄨󵄨󵄨𝑥(1−𝑟𝑘)/𝑟𝑘𝑘

󵄨󵄨󵄨󵄨󵄨
= 𝑐𝑖−1 (𝑥𝑖−1) 󵄨󵄨󵄨󵄨󵄨𝜉𝑘 + 𝑥∗(1/𝑟𝑘)

𝑘

󵄨󵄨󵄨󵄨󵄨1−𝑟𝑘
= 𝑐𝑖−1 (𝑥𝑖−1) 󵄨󵄨󵄨󵄨󵄨𝜉𝑘 + 𝛽𝑘−1 (𝑥𝑘−1) 𝜉𝑘−1󵄨󵄨󵄨󵄨󵄨1−𝑟𝑘
≤ 𝑐𝑖−1 (𝑥𝑖−1) (󵄨󵄨󵄨󵄨𝜉𝑘󵄨󵄨󵄨󵄨1−𝑟𝑘 + 󵄨󵄨󵄨󵄨𝜉𝑘−1󵄨󵄨󵄨󵄨1−𝑟𝑘) .

(B.5)
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By Assumptions 2 and 4, it is easy to know that 𝑥̇𝑘 is
homogeneous of degree 𝑟𝑘 + 𝜏1 with respect to the dilation
weights 𝑟 = (𝑟1, . . . , 𝑟𝑖−1). Based on Assumption 4, the
definition of 𝜉𝑘 in (15), and Lemma A.6, it can be proved that

󵄨󵄨󵄨󵄨𝑥̇𝑘󵄨󵄨󵄨󵄨 ≤ 𝑐 (𝑥𝑘) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟1+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨(𝑟1+𝜏1)/𝑟𝑘
+ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨(𝑟1+𝜏1)/𝑚1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑧𝑘󵄨󵄨󵄨󵄨(𝑟1+𝜏1)/𝑚𝑘 + 󵄨󵄨󵄨󵄨𝑥𝑘+1󵄨󵄨󵄨󵄨)
≤ 𝑐 (𝑥𝑘) (󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨(𝑟1+𝜏1)/𝑟1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨(𝑟1+𝜏1)/𝑟𝑘
+ 󵄨󵄨󵄨󵄨𝑥𝑘+1󵄨󵄨󵄨󵄨) = 𝑐 (𝑥𝑘) (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨𝑟1+𝜏1 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨󵄨𝜉𝑘 − 𝛽𝑘−1 (𝑥𝑘−1) 𝜉𝑘−1󵄨󵄨󵄨󵄨󵄨𝑟1+𝜏1
+ 󵄨󵄨󵄨󵄨󵄨𝜉𝑘+1 − 𝛽𝑘 (𝑥𝑘) 𝜉𝑘󵄨󵄨󵄨󵄨󵄨𝑟1+𝜏1) ≤ 𝑐 (𝑥𝑘) (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨𝑟1+𝜏1 + ⋅ ⋅ ⋅
+ 󵄨󵄨󵄨󵄨𝜉𝑘󵄨󵄨󵄨󵄨𝑟1+𝜏1 + 󵄨󵄨󵄨󵄨𝜉𝑘+1󵄨󵄨󵄨󵄨𝑟1+𝜏1) .

(B.6)

Combining (B.5) with (B.6) leads to

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑥∗𝜇/𝑟𝑖𝑖𝜕𝑥𝑘 𝑥̇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐𝑖−1 (𝑥𝑖−1) (󵄨󵄨󵄨󵄨𝜉𝑘󵄨󵄨󵄨󵄨1−𝑟𝑘 + 󵄨󵄨󵄨󵄨𝜉𝑘−1󵄨󵄨󵄨󵄨1−𝑟𝑘) 𝑐 (𝑥𝑘)
⋅ (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨𝑟1+𝜏1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑘󵄨󵄨󵄨󵄨𝑟1+𝜏1 + 󵄨󵄨󵄨󵄨𝜉𝑘+1󵄨󵄨󵄨󵄨𝑟1+𝜏1)
≤ 𝑐𝑖−1 (𝑥𝑖−1)
⋅ (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨1+𝜏1 + 󵄨󵄨󵄨󵄨𝜉2󵄨󵄨󵄨󵄨1+𝜏1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑘󵄨󵄨󵄨󵄨1+𝜏1 + 󵄨󵄨󵄨󵄨𝜉𝑘+1󵄨󵄨󵄨󵄨1+𝜏1) .

(B.7)

By Lemma A.6, (B.4) together with (B.7) gives
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑊𝑖𝜕𝑥𝑘 𝑥̇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨𝜉𝑖󵄨󵄨󵄨󵄨1−𝜏1 𝑐𝑖−1 (𝑥𝑖−1)
⋅ (󵄨󵄨󵄨󵄨𝜉1󵄨󵄨󵄨󵄨1+𝜏1 + 󵄨󵄨󵄨󵄨𝜉2󵄨󵄨󵄨󵄨1+𝜏1 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝜉𝑘󵄨󵄨󵄨󵄨1+𝜏1 + 󵄨󵄨󵄨󵄨𝜉𝑘+1󵄨󵄨󵄨󵄨1+𝜏1)
≤ 12 (𝜉21 + 𝜉22 + ⋅ ⋅ ⋅ + 𝜉2𝑖−2) + 13𝜉2𝑖−1 + 𝑎2 (𝑥𝑖) 𝜉2𝑖 ,

(B.8)

where 𝑎2(𝑥𝑖) is a smooth strictly positive function.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is supported by the Natural Science Foundation
of China (61540068 and 61503122), Foundation of Henan
Department of Science and Technology (162300410087), and
Foundation of Henan Education Committee (12B120004).

References

[1] R. Riaza, “Double SIB points in differential-algebraic systems,”
IEEETransactions onAutomatic Control, vol. 48, no. 9, pp. 1625–
1629, 2003.

[2] D. J. Hill and I. M. Mareels, “Stability theory for differ-
ential/algebraic systems with application to power systems,”
Institute of Electrical and Electronics Engineers. Transactions on
Circuits and Systems, vol. 37, no. 11, pp. 1416–1423, 1990.

[3] X. Liu and D. W. Ho, “Stabilization of non-linear differential-
algebraic equation systems,” International Journal of Control,
vol. 77, no. 7, pp. 671–684, 2004.

[4] L. Dai, Singular Control Systems, vol. 118 of Lecture Notes in
Control and Information Sciences, Springer, Berlin, 1989.

[5] S. Y. Xu and J. Lam, Robust Control and Filtering of Singular
Systems, Springer, Berlin, Germany, 2006.

[6] Q. Lan, Y. Liu, H. Niu, and J. Liang, “Robust reliable guaranteed
cost control for uncertain singular systems with time-delay,”
Journal of Systems Engineering and Electronics, vol. 21, no. 1, pp.
110–117, 2010.

[7] L. Xiaoping and S. Celikovsky, “Feedback control of affine
nonlinear singular control systems,” International Journal of
Control, vol. 68, no. 4, pp. 753–774, 1997.

[8] C. Yang, J. Sun, Q. Zhang, and X. Ma, “Lyapunov stability and
strong passivity analysis for nonlinear descriptor systems,” IEEE
Transactions on Circuits and Systems. I. Regular Papers, vol. 60,
no. 4, pp. 1003–1012, 2013.

[9] L. Sun, G. Feng, and Y. Wang, “Finite-time stabilization and
H∞ control for a class of nonlinearHamiltonian descriptor sys-
tems with applications to affine nonlinear descriptor systems,”
Automatica, vol. 50, no. 8, pp. 2090–2097, 2014.

[10] H.-S.Wang, C.-F. Yung, and F.-R. Chang, “H∞ control for non-
linear descriptor systems,” Institute of Electrical and Electronics
Engineers. Transactions on Automatic Control, vol. 47, no. 11, pp.
1919–1925, 2002.

[11] F. Castaños, D. Hernández, and L. Fridman, “Integral sliding-
mode control for linear time-invariant implicit systems,” Auto-
matica, vol. 50, no. 3, pp. 971–975, 2014.

[12] J. Xu and J. Sun, “Finite-time stability of linear time-varying
singular impulsive systems,” IET Control Theory &amp; Appli-
cations, vol. 4, no. 10, pp. 2239–2244, 2010.

[13] J. L. Lin and S. J. Chen, “Robustness analysis of uncertain linear
singular systems with output feedback control,” Institute of
Electrical and Electronics Engineers. Transactions on Automatic
Control, vol. 44, no. 10, pp. 1924–1929, 1999.

[14] D. Lin and W. Lan, “Output feedback composite nonlinear
feedback control for singular systems with input saturation,”
Journal of the Franklin Institute, vol. 352, no. 1, pp. 384–398, 2015.

[15] N. Harris McClamroch, “Feedback stabilization of control
systems described by a class of nonlinear differential-algebraic
equations,” Systems & Control Letters, vol. 15, no. 1, pp. 53–60,
1990.

[16] D. F. Coutinho, A. S. Bazanella, A. Trofino, and A. S. e
Silva, “Stability analysis and control of a class of differential-
algebraic nonlinear systems,” International Journal of Robust
and Nonlinear Control, vol. 14, no. 16, pp. 1301–1326, 2004.

[17] Z. P. Jiang and M. Ikeda, “Backstepping design for stabilization
of nonlinear differential-algebraic systems,” in Proceedings of
the 48th Japan Joint Automatic Control Conference, pp. 927–930,
Nagano-ken, Japan, November 2005.

[18] W.-H. Chen, “Harmonic disturbance observer for nonlinear
systems,” Journal of Dynamic Systems, Measurement and Con-
trol, vol. 125, no. 1, pp. 114–117, 2003.

[19] L. Marconi and A. Teel, “Matched disturbance suppression
for nonlinear systems stabilizable by logic-based feedback,”
Automatica, vol. 48, no. 5, pp. 886–893, 2012.



14 Discrete Dynamics in Nature and Society

[20] K.-S. Kim, K.-H. Rew, and S. Kim, “Disturbance observer for
estimating higher order disturbances in time series expansion,”
IEEETransactions onAutomatic Control, vol. 55, no. 8, pp. 1905–
1911, 2010.

[21] Y. Z. Tsypkin, J. D. Mason, E. D. Avedyan, K. Warwick, and
I. K. Levin, “Neural networks for identification of nonlinear
systems under random piecewise polynomial disturbances,”
IEEE Transactions on Neural Networks, vol. 10, no. 2, pp. 303–
312, 1999.

[22] J. Yang, S. Li, J. Su, and X. Yu, “Continuous nonsingular
terminal sliding mode control for systems with mismatched
disturbances,” Automatica, vol. 49, no. 7, pp. 2287–2291, 2013.

[23] J. Han, “FromPID to active disturbance rejection control,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–
906, 2009.

[24] Y. Liu, C. Li, and R. Wu, “Feedback control of nonlinear differ-
ential algebraic systems using Hamiltonian function method,”
Science in China. Series F. Information Sciences, vol. 49, no. 4,
pp. 436–445, 2006.

[25] Z. Chen and J. Huang, “Solution of output regulation of
singular nonlinear systems by normal output feedback,” IEEE
Transactions on Automatic Control, vol. 47, no. 5, pp. 808–813,
2002.

[26] S. Pang, J. Huang, and Y. Bai, “Robust output regulation of
singular nonlinear systems via a nonlinear internal model,”
IEEE Transactions on Automatic Control, vol. 50, no. 2, pp. 222–
228, 2005.

[27] X. M. Yao, L. Q. Zhu, and L. Guo, “Disturbance-observer-based
control &𝐻∞ control for non-linear Markovian jump singular
systems with multiple disturbances,” IET Control Theory &
Applications, vol. 8, no. 16, pp. 1689–1697, 2014.

[28] S. P. Bhat andD. S. Bernstein, “Continuous finite-time stabiliza-
tion of the translational and rotational double integrators,” IEEE
Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682,
1998.

[29] S. Ding, J. Wang, andW. X. Zheng, “Second-order slidingmode
control for nonlinear uncertain systems bounded by positive
functions,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 9, pp. 5899–5909, 2015.

[30] S. Ding, A. Levant, and S. Li, “Simple homogeneous sliding-
mode controller,” Automatica, vol. 67, pp. 22–32, 2016.

[31] Z.-Y. Sun, L.-R. Xue, and K. M. Zhang, “A new approach
to finite-time adaptive stabilization of high-order uncertain
nonlinear system,” Automatica, vol. 58, no. 8, pp. 60–66, 2015.

[32] A. Levant, “Higher-order sliding modes, differentiation and
output-feedback control,” International Journal of Control, vol.
76, no. 9-10, pp. 924–941, 2003.

[33] X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization
of a class of uncertain nonlinear systems,”Automatica. A Journal
of IFAC, the International Federation of Automatic Control, vol.
41, no. 5, pp. 881–888, 2005.

[34] Y. Hong, Z.-P. Jiang, and G. Feng, “Finite-time input-to-state
stability and applications to finite-time control design,” SIAM
Journal on Control and Optimization, vol. 48, no. 7, pp. 4395–
4418, 2010.

[35] J. Li, C. Qian, and S. Ding, “Global finite-time stabilisation by
output feedback for a class of uncertain nonlinear systems,”
International Journal of Control, vol. 83, no. 11, pp. 2241–2252,
2010.

[36] S. Li, H. Du, and X. Lin, “Finite-time consensus algorithm for
multi-agent systems with double-integrator dynamics,” Auto-
matica, vol. 47, no. 8, pp. 1706–1712, 2011.

[37] H. Du, C. Qian, S. Yang, and S. Li, “Recursive design of finite-
time convergent observers for a class of time-varying nonlinear
systems,” Automatica. A Journal of IFAC, the International
Federation of Automatic Control, vol. 49, no. 2, pp. 601–609, 2013.

[38] Q. Lan, S. Li, S. Khoo, andP. Shi, “Global finite-time stabilisation
for a class of stochastic nonlinear systems by output feedback,”
International Journal of Control, vol. 88, no. 3, pp. 494–506, 2015.

[39] H. Sun and L. Guo, “Neural network-based dobc for a class
of nonlinear systems with unmatched disturbances,” IEEE
Transactions on Neural Networks and Learning Systems, 2016.

[40] Y. Li, H. Sun, G. Zong, and L. Hou, “Disturbance-observer-
based-control and L2−L∞ resilient control for Markovian
jump non-linear systems with multiple disturbances and its
application to single robot arm system,” IET Control Theory &
Applications, vol. 10, no. 2, pp. 226–233, 2016.

[41] W. Lin and C. Qian, “Adding one power integrator: a tool
for global stabilization of high-order lower-triangular systems,”
Systems & Control Letters, vol. 39, no. 5, pp. 339–351, 2000.

[42] L. Rosier, “Homogeneous Lyapunov function for homogeneous
continuous vector field,” Systems & Control Letters, vol. 19, no.
6, pp. 467–473, 1992.

[43] A. E. Assoudi, E. H. E. Yaagoubi, and H. Hammouri, “A high
gain observer for a class of implicit systems,” in Proceedings
of the 44th IEEE Conference on Decision and Control, and the
European Control Conference, pp. 6359–6363, Seville, Spain,
December 2005.

[44] L. Sun and Y. Wang, “An undecomposed approach to control
design for a class of nonlinear descriptor systems,” International
Journal of Robust and Nonlinear Control, vol. 23, no. 6, pp. 695–
708, 2013.

[45] C. Qian andW. Lin, “A continuous feedback approach to global
strong stabilization of nonlinear systems,” IEEE Transactions on
Automatic Control, vol. 46, no. 7, pp. 1061–1079, 2001.

[46] J. Polendo and C. Qian, “An expanded method to robustly
stabilize uncertain nonlinear systems,” Communications in
Information and Systems, vol. 8, no. 1, pp. 55–70, 2008.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


