72,771 research outputs found

    A Grassmann integral equation

    Full text link
    The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra G_m. A particular type of Grassmann integral equations is explicitly studied for certain low-dimensional Grassmann algebras. The choice of the equation under investigation is motivated by the effective action formalism of (lattice) quantum field theory. In a very general setting, for the Grassmann algebras G_2n, n = 2,3,4, the finite-dimensional analogues of the generating functionals of the Green functions are worked out explicitly by solving a coupled system of nonlinear matrix equations. Finally, by imposing the condition G[{\bar\Psi},{\Psi}] = G_0[{\lambda\bar\Psi}, {\lambda\Psi}] + const., 0<\lambda\in R (\bar\Psi_k, \Psi_k, k=1,...,n, are the generators of the Grassmann algebra G_2n), between the finite-dimensional analogues G_0 and G of the (``classical'') action and effective action functionals, respectively, a special Grassmann integral equation is being established and solved which also is equivalent to a coupled system of nonlinear matrix equations. If \lambda \not= 1, solutions to this Grassmann integral equation exist for n=2 (and consequently, also for any even value of n, specifically, for n=4) but not for n=3. If \lambda=1, the considered Grassmann integral equation has always a solution which corresponds to a Gaussian integral, but remarkably in the case n=4 a further solution is found which corresponds to a non-Gaussian integral. The investigation sheds light on the structures to be met for Grassmann algebras G_2n with arbitrarily chosen n.Comment: 58 pages LaTeX (v2: mainly, minor updates and corrections to the reference section; v3: references [4], [17]-[21], [39], [46], [49]-[54], [61], [64], [139] added

    Nonlinear Integral-Equation Formulation of Orthogonal Polynomials

    Full text link
    The nonlinear integral equation P(x)=\int_alpha^beta dy w(y) P(y) P(x+y) is investigated. It is shown that for a given function w(x) the equation admits an infinite set of polynomial solutions P(x). For polynomial solutions, this nonlinear integral equation reduces to a finite set of coupled linear algebraic equations for the coefficients of the polynomials. Interestingly, the set of polynomial solutions is orthogonal with respect to the measure x w(x). The nonlinear integral equation can be used to specify all orthogonal polynomials in a simple and compact way. This integral equation provides a natural vehicle for extending the theory of orthogonal polynomials into the complex domain. Generalizations of the integral equation are discussed.Comment: 7 pages, result generalized to include integration in the complex domai

    Shear viscosity in Ï•4\phi^4 theory from an extended ladder resummation

    Full text link
    We study shear viscosity in weakly coupled hot Ï•4\phi^4 theory using the CTP formalism . We show that the viscosity can be obtained as the integral of a three-point function. Non-perturbative corrections to the bare one-loop result can be obtained by solving a decoupled Schwinger-Dyson type integral equation for this vertex. This integral equation represents the resummation of an infinite series of ladder diagrams which contribute to the leading order result. It can be shown that this integral equation has exactly the same form as the Boltzmann equation. We show that the integral equation for the viscosity can be reexpressed by writing the vertex as a combination of polarization tensors. An expression for this polarization tensor can be obtained by solving another Schwinger-Dyson type integral equation. This procedure results in an expression for the viscosity that represents a non-perturbative resummation of contributions to the viscosity which includes certain non-ladder graphs, as well as the usual ladders. We discuss the motivation for this resummation. We show that these resummations can also be obtained by writing the viscosity as an integral equation involving a single four-point function. Finally, we show that when the viscosity is expressed in terms of a four-point function, it is possible to further extend the set of graphs included in the resummation by treating vertex and propagator corrections self-consistently. We discuss the significance of such a self-consistent resummation and show that the integral equation contains cancellations between vertex and propagator corrections.Comment: Revtex 40 pages with 29 figures, version to appear in Phys. Rev.
    • …
    corecore