research

Nonlinear Integral-Equation Formulation of Orthogonal Polynomials

Abstract

The nonlinear integral equation P(x)=\int_alpha^beta dy w(y) P(y) P(x+y) is investigated. It is shown that for a given function w(x) the equation admits an infinite set of polynomial solutions P(x). For polynomial solutions, this nonlinear integral equation reduces to a finite set of coupled linear algebraic equations for the coefficients of the polynomials. Interestingly, the set of polynomial solutions is orthogonal with respect to the measure x w(x). The nonlinear integral equation can be used to specify all orthogonal polynomials in a simple and compact way. This integral equation provides a natural vehicle for extending the theory of orthogonal polynomials into the complex domain. Generalizations of the integral equation are discussed.Comment: 7 pages, result generalized to include integration in the complex domai

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 02/01/2020