183 research outputs found

    On finite groups all of whose cubic Cayley graphs are integral

    Full text link
    For any positive integer kk, let Gk\mathcal{G}_k denote the set of finite groups GG such that all Cayley graphs Cay(G,S){\rm Cay}(G,S) are integral whenever Sk|S|\le k. Esteˊ{\rm \acute{e}}lyi and Kovaˊ{\rm \acute{a}}cs \cite{EK14} classified Gk\mathcal{G}_k for each k4k\ge 4. In this paper, we characterize the finite groups each of whose cubic Cayley graphs is integral. Moreover, the class G3\mathcal{G}_3 is characterized. As an application, the classification of Gk\mathcal{G}_k is obtained again, where k4k\ge 4.Comment: 11 pages, accepted by Journal of Algebra and its Applications on June 201

    Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem

    Get PDF
    Fix an ordinary abelian variety defined over a finite field. The ideal class group of its endomorphism ring acts freely on the set of isogenous varieties with same endomorphism ring, by complex multiplication. Any subgroup of the class group, and generating set thereof, induces an isogeny graph on the orbit of the variety for this subgroup. We compute (under the Generalized Riemann Hypothesis) some bounds on the norms of prime ideals generating it, such that the associated graph has good expansion properties. We use these graphs, together with a recent algorithm of Dudeanu, Jetchev and Robert for computing explicit isogenies in genus 2, to prove random self-reducibility of the discrete logarithm problem within the subclasses of principally polarizable ordinary abelian surfaces with fixed endomorphism ring. In addition, we remove the heuristics in the complexity analysis of an algorithm of Galbraith for explicitly computing isogenies between two elliptic curves in the same isogeny class, and extend it to a more general setting including genus 2.Comment: 18 page

    Groups all of whose undirected Cayley graphs are integral

    Full text link
    Let GG be a finite group, SG{1}S\subseteq G\setminus\{1\} be a set such that if aSa\in S, then a1Sa^{-1}\in S, where 11 denotes the identity element of GG. The undirected Cayley graph Cay(G,S)Cay(G,S) of GG over the set SS is the graph whose vertex set is GG and two vertices aa and bb are adjacent whenever ab1Sab^{-1}\in S. The adjacency spectrum of a graph is the multiset of all eigenvalues of the adjacency matrix of the graph. A graph is called integral whenever all adjacency spectrum elements are integers. Following Klotz and Sander, we call a group GG Cayley integral whenever all undirected Cayley graphs over GG are integral. Finite abelian Cayley integral groups are classified by Klotz and Sander as finite abelian groups of exponent dividing 44 or 66. Klotz and Sander have proposed the determination of all non-abelian Cayley integral groups. In this paper we complete the classification of finite Cayley integral groups by proving that finite non-abelian Cayley integral groups are the symmetric group S3S_{3} of degree 33, C3C4C_{3} \rtimes C_{4} and Q8×C2nQ_{8}\times C_{2}^{n} for some integer n0n\geq 0, where Q8Q_8 is the quaternion group of order 88.Comment: Title is change

    Isogeny graphs of ordinary abelian varieties

    Get PDF
    Fix a prime number \ell. Graphs of isogenies of degree a power of \ell are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse graphs of so-called l\mathfrak l-isogenies, resolving that they are (almost) volcanoes in any dimension. Specializing to the case of principally polarizable abelian surfaces, we then exploit this structure to describe graphs of a particular class of isogenies known as (,)(\ell, \ell)-isogenies: those whose kernels are maximal isotropic subgroups of the \ell-torsion for the Weil pairing. We use these two results to write an algorithm giving a path of computable isogenies from an arbitrary absolutely simple ordinary abelian surface towards one with maximal endomorphism ring, which has immediate consequences for the CM-method in genus 2, for computing explicit isogenies, and for the random self-reducibility of the discrete logarithm problem in genus 2 cryptography.Comment: 36 pages, 4 figure

    On prisms, M\"obius ladders and the cycle space of dense graphs

    Full text link
    For a graph X, let f_0(X) denote its number of vertices, d(X) its minimum degree and Z_1(X;Z/2) its cycle space in the standard graph-theoretical sense (i.e. 1-dimensional cycle group in the sense of simplicial homology theory with Z/2-coefficients). Call a graph Hamilton-generated if and only if the set of all Hamilton circuits is a Z/2-generating system for Z_1(X;Z/2). The main purpose of this paper is to prove the following: for every s > 0 there exists n_0 such that for every graph X with f_0(X) >= n_0 vertices, (1) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is odd, then X is Hamilton-generated, (2) if d(X) >= (1/2 + s) f_0(X) and f_0(X) is even, then the set of all Hamilton circuits of X generates a codimension-one subspace of Z_1(X;Z/2), and the set of all circuits of X having length either f_0(X)-1 or f_0(X) generates all of Z_1(X;Z/2), (3) if d(X) >= (1/4 + s) f_0(X) and X is square bipartite, then X is Hamilton-generated. All these degree-conditions are essentially best-possible. The implications in (1) and (2) give an asymptotic affirmative answer to a special case of an open conjecture which according to [European J. Combin. 4 (1983), no. 3, p. 246] originates with A. Bondy.Comment: 33 pages; 5 figure
    corecore