16,985 research outputs found

    High-performance Parallel Solver for Integral Equations of Electromagnetics Based on Galerkin Method

    Full text link
    A new parallel solver for the volumetric integral equations (IE) of electrodynamics is presented. The solver is based on the Galerkin method which ensures the convergent numerical solution. The main features include: (i) the memory usage is 8 times lower, compared to analogous IE based algorithms, without additional restriction on the background media; (ii) accurate and stable method to compute matrix coefficients corresponding to the IE; (iii) high degree of parallelism. The solver's computational efficiency is shown on a problem of magnetotelluric sounding of the high conductivity contrast media. A good agreement with the results obtained with the second order finite element method is demonstrated. Due to effective approach to parallelization and distributed data storage the program exhibits perfect scalability on different hardware platforms.Comment: The main results of this paper were presented at IAMG 2015 conference Frieberg, Germany. 28 pages, 11 figure

    Entire domain basis function expansion of the differential surface admittance for efficient broadband characterization of lossy interconnects

    Get PDF
    This article presents a full-wave method to characterize lossy conductors in an interconnect setting. To this end, a novel and accurate differential surface admittance operator for cuboids based on entire domain basis functions is formulated. By combining this new operator with the augmented electric field integral equation, a comprehensive broadband characterization is obtained. Compared with the state of the art in differential surface admittance operator modeling, we prove the accuracy and improved speed of the novel formulation. Additional examples support these conclusions by comparing the results with commerical software tools and with measurements

    Finite difference time domain simulation of the Earth-ionosphere resonant cavity: Schumann resonances

    Get PDF

    Automated Netlist Generation for 3D Electrothermal and Electromagnetic Field Problems

    Full text link
    We present a method for the automatic generation of netlists describing general three-dimensional electrothermal and electromagnetic field problems. Using a pair of structured orthogonal grids as spatial discretisation, a one-to-one correspondence between grid objects and circuit elements is obtained by employing the finite integration technique. The resulting circuit can then be solved with any standard available circuit simulator, alleviating the need for the implementation of a custom time integrator. Additionally, the approach straightforwardly allows for field-circuit coupling simulations by appropriately stamping the circuit description of lumped devices. As the computational domain in wave propagation problems must be finite, stamps representing absorbing boundary conditions are developed as well. Representative numerical examples are used to validate the approach. The results obtained by circuit simulation on the generated netlists are compared with appropriate reference solutions.Comment: This is a pre-print of an article published in the Journal of Computational Electronics. The final authenticated version is available online at: https://dx.doi.org/10.1007/s10825-019-01368-6. All numerical results can be reproduced by the Matlab code openly available at https://github.com/tc88/ANTHE
    corecore