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Finite Difference Time Domain Simulation of the
Earth-Ionosphere Resonant Cavity: Schumann

Resonances
Antonio Soriano, Enrique A. Navarro, Dominique L. Paul, Jorge A. Portí, Juan A. Morente, and Ian J. Craddock

Abstract—This paper presents a numerical approach to study
the electrical properties of the Earth’s atmosphere. The finite-dif-
ference time-domain (FDTD) technique is applied to model the
Earth’s atmosphere in order to determine Schumann resonant
frequencies of the Earth. Three-dimensional spherical coordinates
are employed and the conductivity profile of the atmosphere
versus height is introduced. Periodic boundary conditions are
implemented in order to exploit the symmetry in rotation of the
Earth and decrease computational requirements dramatically.
For the first time, very accurate FDTD results are obtained, not
only for the fundamental mode but also for higher order modes
of Schumann resonances. The proposed method constitutes a
useful tool to obtain Schumann resonant frequencies, therefore
to validate electrical models for the terrestrial atmosphere, or
atmospheres of other celestial bodies.

Index Terms—Earth-ionosphere waveguide, extremely low
frequency (ELF), finite-difference time-domain (FDTD) methods,
propagation.

I. INTRODUCTION

THE ionosphere and Earth’s surface could be considered
like conductors, both of them delimiting an enormous res-

onant cavity. Resonant frequencies associated with this cavity
are in the Extremely Low Frequency (ELF) range because of
the Earth dimensions. These eigenfrequencies, also called Schu-
mann frequencies, were predicted by W. O. Schumann in 1952
[1], and detected by Balser and Wagner in 1960 [2]. Schumann
resonance frequencies are related to several geophysical phe-
nomena like earthquakes and lightning. Nowadays, the interest
in Schumann resonances has increased considerably mainly due
to the following.

• The existence of a clear correlation between Schumann
frequencies and the tropical temperature [3].

• The relationship between Schumann frequencies and
lightning which permits the exploration of terrestrial-
like electrical activity in other celestial bodies such as
Mars [4] and the Saturnian moon, Titan [5].
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Techniques available in the literature for the study of Schu-
mann resonances are primarily based upon frequency-domain
waveguide theory [6]. Recently, Cummer [7] applied a two-di-
mensional (2-D) finite-difference time-domain (FDTD) tech-
nique in cylindrical coordinates to the modeling of propagation
from lightning radiation in the Earth-ionosphere waveguide.
Cummer showed that the FDTD technique was extremely well
suited to the characterization of such a phenomenon in very
low frequency (VLF) range. In a more recent paper, Simpson
and Taflove [8] developed a two-dimensional FDTD technique
involving a mix of trapezoidal and triangular cells to map
the entire surface of the Earth and described antipodal ELF
propagation and Schumann resonances. Although Simpson
and Taflove achieved very good accuracy for the fundamental
Schumann resonance, their two-dimensional model excluded
the characterization of higher order Schumann resonances.

In this paper, an electrical model of the Earth’s atmosphere
based on FDTD technique is presented, which permits the char-
acterization of Schumann resonances. To model the Earth-iono-
sphere cavity, a three dimensional mesh in spherical coordi-
nates is employed. Computational demands are minimized by
the implementation of periodic boundary conditions. A simple
model of the atmosphere considers the Earth’s surface and the
ionosphere as perfect conductors, the gap between both con-
ducting surfaces being around 60 Km. This model provides a
first approximation to derive Schumann resonances, but better
results are obtained when electrical conductivity is inserted into
the model. An accurate model which includes the conductivity
profile of the atmosphere versus height is presented, where the
Earth’s surface acts as a perfect conductor and the ionosphere
like a good, but imperfect conductor. In the second model, the
gap between the Earth’s surface and the ionosphere is around
100 Km, and the conductivity profile is obtained from [9], and
[10].

Our model does not include ionosphere day/night asymmetry,
neither the anisotropy of the ionosphere or the magnetic field.
We look for resonant frequencies below 50 Hz in the Earth. Be-
cause of the spherical symmetry, the resonant frequencies have
no dependence in , [10], then in our model we assume there
is no variation for all the field values, deriving in a 2-D az-
imuthally symmetry. However our FDTD scheme is three di-
mensional, we can introduce more cells along the direction to
complete the Earth for a future analysis of day/night ionosphere
asymmetry.

We demonstrated that a simple numerical model can produce
accurate results. This is a very simple model also efficient in

0018-926X/$20.00 © 2005 IEEE
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terms of computer resources. So far, no other equivalent nu-
merical technique FDTD or TLM achieves the accuracy of our
model.

II. NUMERICAL MODEL

A. FDTD Technique in Spherical Coordinates

The FDTD technique usually uses a rectangular coordinate
system because of its simplicity. When the geometry of the
problem under study does not align with the axes of the rectan-
gular coordinate system, nonorthogonal techniques are usually
employed to avoid the staircasing effect [11], [12]. Cylindrical
or spherical coordinate systems are hardly ever used in FDTD
modeling. Since the Earth has an almost spherical symmetry, the
spherical coordinate system is especially suitable to model the
Earth-ionosphere cavity. This choice of the coordinate system is
useful for the reduction of computing resources such as memory
and computation time.

The use of curvilinear coordinates is described by Fusco in
[13]. Curvilinear systems require the use of the integral expres-
sions of the Maxwell curl equations in free source regions

(1a)

(1b)

In the above equations, represents the integration surface,
and is a closed integration path which delimits the surface .

The continuous electric and magnetic fields are discretized
to obtain the FDTD equations. The discretization of the radial
component of the electric field is

(2)

where the parameter is the Earth’s radius, and , and are
integers corresponding to the , and directions, respectively.

The explicit inclusion of the Earth’s radius into the FDTD
updating equations in spherical coordinates avoids the modeling
of inner points where no propagation occurs. By only modeling
the Earth’s atmosphere the mesh size is reduced considerably.
Discrete equations are obtained taking into account the position
of the electric and magnetic field components in the spherical
nodes, as illustrated in Figs. 1 and 2

(3)

The magnetic field component in the radial direction is up-
dated with the above equation at each time step. Similar
expressions are derived to update the electric field and the other
magnetic field components. The coefficient in (3) represents

Fig. 1. FDTD node in spherical coordinates.

Fig. 2. FDTD-grid normal to the radial component in the northern hemisphere.

the integration surface element corresponding to each cell, it is
obtained by integrating the differential surface element in the
radial direction . Similar coefficients are evaluated in the
and directions, (4)

(4a)

(4b)

(4c)

The coefficients and in (3) correspond to the length of
the integration path in each direction, and describe the geomet-
rical properties of the mesh in the spherical coordinate system.
As in the previous case regarding surface parameters, these co-
efficients are evaluated by integrating the differential length el-
ements along the cell edges

(5a)

(5b)

(5c)

These coefficients are position-dependent, hence, their ex-
pressions include the position indexes. However, some of them,
because of our discretization, have constant values, or depend
on one or two indexes.

B. Handling of the Discontinuities in the System

Two important discontinuities exist in the spherical coordi-
nate system [13]. The first one is placed at the origin of the co-
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Fig. 3. Detail of the north pole discontinuity.

ordinate system, the other one is along the north-south (N-S)
axis. As our numerical mesh does not include the origin the first
discontinuity needs not to be addressed. Therefore, attention is
given to the zenithal angles and , (N-S axis). To
overcome this discontinuity, a suitable choice of the field dis-
tribution is needed. As shown in Fig. 3, an alternative circular
path for the , surrounding the discontinuity in the N-S axis, is
used to update . The following integral equation was solved
to update along the discontinuity:

(6)

We introduce the special points and .
represents the electric field along the N-S axis in the

northern hemisphere , and corresponds to
the southern hemisphere . In the following we develop
the updating equations for , analogous equations are
derived for .

(7)

The coefficients represent a circular surface, shown
in the bottom of Fig. 3, enclosed by a circular path along the
middle of the sectoral cells that are shown in the top of Fig. 3.
Then, are obtained by adding the surface of each cir-
cular sector of angle . The discretization along the axis is

, then each sectoral cell has .
Equations (6) and (7) will provide the updating equation for

using the components that belong to the special
sectoral cells located around the N-S axis, top of Fig. 3. The
numerical integration of the right side of (6) reduces to a sum
for the components along the circular path of Fig. 3. Each

component in the circular path corresponds to

Fig. 4. FDTD grid used to compute Schumann resonances.

a distinct sectoral -cell that surrounds the N-S axis. Thus, the
final updating equation for the points is

(8)

The coefficient , introduced in (8), depends on the dis-
cretization and electrical properties. It includes all geometrical
and electrical coefficients involved in the updating equation for
the electrical field along the N-S axis

(9)

Analogous equations are derived for the special
points.

C. Reduction of Modeling Requirements

Although a three dimensional model is required to simulate
the entire atmosphere, it is possible to reduce significantly the
computational cost required to obtain resonant frequencies of
the Earth-ionosphere cavity. This is possible because of the de-
generacy of the expected solution in spherical coordinates along
the direction, see [10]. By using this property, a simpler mesh
with only one cell along the direction, but still containing three
dimensional information, is strictly required to obtain Schu-
mann resonances. The mesh used to obtain Schumann reso-
nances is shown in Fig. 4. Also, periodic boundary conditions
are implemented to consider that electric and magnetic fields
are independent. The following equations enforce the peri-
odic boundary conditions for the radial components:

(10)

The complete implementation of the periodic boundary con-
ditions requires analogous expressions for the components of
the electric and magnetic fields. These conditions are introduced
to enforce no-field variations along the direction. Therefore,
our model reduces the mesh to a single cell along -axis.

In addition to periodic boundary conditions, a special treat-
ment of the axis is required to reduce the (6)–(9) to



1538 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 4, APRIL 2005

consider a single cell along direction. As mentioned before,
in order to reduce computational requirements no variation of
the electromagnetic field is assumed along the axis. Thus,

remains constant along the direction ( -index).
Then the updating equation for in this particular sym-
metry is

(11)

Although the numerical model is three dimensional, because
of the -symmetry, our simulation is carried out for a single
cell along the direction. But a closed circular integration path
is required to update the electric field at the N-S axis. The (8)
is evaluated takeing into account the periodic boundary condi-
tions, this implies that has symmetry along the axis. Thus,
the sum in (8) is times greater the magnetic field eval-
uated at the computed cell.

D. Treatment of Losses

When losses are present, the Maxwell equations are modified
to include Joule effect. Losses in a real conducting media are in-
troduced by means of a finite conductivity , that in our model
for the ionosphere are dependent on the radial distance to the
Earth surface, . The profile for the ionosphere conduc-
tivity for our numerical model was obtained from [9] and [10]

(12a)

(12b)

The discretization of the above equations is carried out fol-
lowing a similar treatment as in previous sections. However the
linear temporal differentiation is replaced by a first order ex-
ponential scheme, that can be found in [14] and is more appro-
priated when high losses are present. The first order exponential
scheme is well suited for the modeling of layered structures with
high losses using a reduced number of cells, providing more ac-
curate results than other linear schemes.

The discrete updating equation for when considering
losses is

(13)

where the conductivity in ionosphere is stratified, .

Fig. 5. Conductivity profile of the terrestrial atmosphere.

Similar equations to (13) are obtained for the rest of elec-
tric field components, whereas the updating equations for the
magnetic field components are the same for both lossless and
lossy cavity because Faraday’s Law does not change when in-
troducing losses, see (1a) and (12a).

III. NUMERICAL RESULTS

The utility of the proposed technique is the numerical calcula-
tion of Schumann resonances of any celestial body, with a given
radius and atmosphere conductivity profile. To verify the utility
of the technique, a model for the Earth is built. In this model,
the atmosphere is assumed to be a vacuum medium bounded
by perfect conductors. The inner conductor is the Earth surface,
and the outer one is assumed the be located at the lower layer of
the ionosphere. The analytical solution for the electromagnetic
field in a region bounded by two spherical conductors can be
found in [10].

The simple lossless model is based in two facts. First, the con-
ductivity of the Earth’s surface ranges from to
at solid parts to 4 S/m at ocean surfaces. These values ensure
that the Earth’s surface behaves as a good conductor in the ELF
range. Second, if we consider Fig. 5 which shows the conduc-
tivity profile for a quiet atmosphere surrounding the Earth [10],
a considerably higher slope of the conductivity versus altitude is
observed for heights above 60 Km. Therefore, an initial simple
model for the atmosphere thickness is a 60 Km vacuum region,
bounded by two spherical perfect conductor surfaces.

The atmosphere is simulated using a 12 120 mesh, resulting
in spatial and angular discretizations of: and

. As mentioned before, only one cell was computed
along the direction, the angular cell size is . The dis-
cretizations along and directions ( and respectively)
are chosen depending on geometric parameters. The length of
the cell along direction is less important to the results than the
other two. The criterion we used to determine this value was a
balance to get cells as squared as possible in equator and poles.
Because the cell length in the direction depends on the lati-
tude, is shorter in the poles than in the equator.

The Schumann resonances of the Earth-ionosphere cavity are
obtained by performing the fast Fourier transform (FFT) over
the time domain fields. Since the Schumann resonances are in
the ELF range, a large simulation time is required to
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TABLE I
THEORETICAL AND NUMERICAL RESONANT FREQUENCIES (IN HERTZ) FOR A 60

KM LOSSLESS ATMOSPHERE. n IS THE INDEX OF THE RESONANCE

achieve the desired FFT resolution, given by .
The Courant stability criterion restricts the time step to

. Therefore, a large number of time iterations is re-
quired in order to achieve sensitivity enough for the FFT. In our
simulations, a total of time steps are necessary to
obtain a frequency resolution .

Table I summarizes the results obtained with the FDTD
technique. These are compared against analytical and transmis-
sion line matrix (TLM) results for the Earth-ionosphere cavity
without losses [10]. Resonant frequencies obtained with the
TLM method and FDTD are very similar, the main difference
between TLM and FDTD is that the first method uses anal-
ogous transmission line circuits whose voltages and currents
define the electromagnetic field, while FDTD technique di-
rectly evaluates the electromagnetic field by solving Maxwell
equations through a finite difference scheme. The similarity
of the numerical resonances obtained with both analytical
and numerical results serves as validation for the proposed
technique. However, there is a significant difference between
the numerical results and the measured Schumann resonances.

Once the results provided by the previous simulations val-
idated our FDTD scheme given in Section II, a more accu-
rate model for the terrestrial atmosphere including losses was
considered. This model introduces the conductivity profile, ob-
tained from [9] and [10], of the quiet atmosphere shown in
Fig. 5. Now, the Earth’s surface is modeled as a perfect con-
ductor , and the ionosphere layer is modeled like good
conductors (profile ). Although the losses through the
layers of ionosphere are really small (about parts of the in-
cident wave), they have a considerably influence in the derived
numerical frequencies.

In the present model, a 100 Km thick atmosphere layer is
simulated. In order to maintain the cell dimensions in the ra-
dial direction, the mesh used for this simulation is larger than
the one used for the previous one, 20 120 cells are consid-
ered. In the radial direction the mesh finishes with five addi-
tional cells with perfect matched layers (PML), backed by a
perfect conductor. The number of time steps , and the fre-
quency resolution are unchanged from the previous model. The
mesh has 20 cells per wavelength for the 6th mode. However
we also tried finer meshes, in using a mesh with twice the den-
sity we did not get a significant improvement, but consumed
more computer resources. The mesh is optimal for the frequency
band 5–50 Hz, to calculate the Schumann frequencies up to 50
Hz. Our program runs in a Pentium IV personal computer with

Fig. 6. Spectral response at equator points.

512 Mb RAM, it takes around 10 minutes per simulation. The
spectral response of the Earth-ionosphere cavity is obtained

by doing the FFT of the time domain fields, it is presented in
Fig. 6 for both lossless and lossy cavities. The sharpest reso-
nance peaks correspond to the lossless cavity, while a quasi-
continuum-soft spectrum is obtained with the model including
the conductivity profile. This is because of the overlapping of
contiguous modes, caused by the broadening of the resonant re-
sponse after the introduction of losses. This spectral response
is typical from a low Q structure, where losses are present.
To estimate the resonant frequencies two different approaches
are used. The first is a perturbation approach, were the lossless
modes obtained from the first model are used to excite the iono-
sphere with losses: Two sets of modes, with spaced frequen-
cies provide sharp and spaced peaks with the FFT. In that way,
two simulations were used, the first for 1–3–5 modes, and the
second for 2–4–6 modes. The second approach uses the mul-
tiple signal classification (MUSIC) libraries of MATLAB,1 and
a single time series from the time domain fields. Results using
both approaches present negligible differences.

To compare our numerical results with other existing ones,
let us consider a semi-analytical model based on the qualitative
behavior of the Earth’s quiet atmosphere conductivity shown in
Fig. 5. Two different regions with a common interface at around
60 Km altitude are clearly appreciated in this figure. Approxi-
mately, region I corresponds to heights below 60 Km height and
region II for heights above 60 Km. The conductivity increases
with height in both regions, but the increase is faster in the ex-
ternal region. This dual behavior is the basis of the two-scale
height ionospheric model proposed by Sentman in 1990 [15],
which is widely accepted by the scientific community working
on Schumann resonances. The model uses the following approx-
imate conductivity profile:

(region I)
(region II)

(14)

where stands for the altitude above ground level, and are
local scale heights which range from 3 to 5 Km, depending
on the authors, the termed ELF conducting boundary is the
height where , and the ELF reflection boundary

1MATLAB is a registered trademark of The MathWorks, Natick,MA.
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TABLE II
RESONANT FREQUENCIES (IN HERTZ) AND PERCENTAGE DEVIATION FOR A 100

KM ATMOSPHERE WITH CONDUCTIVITY PROFILE. n IS THE INDEX

OF THE RESONANCE

is the altitude where . Typical values of these
heights range from 40 to 50 Km for , and from 75 to 90 Km for

. The conductivity profile of the two-scale ionospheric model
matching the experimental conductivity at 45 and 75 Km alti-
tude is also shown in Fig. 5.

Regarding the model details, it assumes that there is no alti-
tude-dependence of the magnetic field in region I and that the
transverse-to- electric field is zero at the Earth’s surface and
also in the region II. Matching the electric potential at the in-
terface between regions I and II, the two-layer model yields the
following eigenfrequencies for the Earth-ionosphere cavity:

(15)

where is an integer number. Using this expres-
sion with typical values , , and

, a set of Schumann resonances in good agree-
ment with experimental observations are obtained. These values
are also included in Table II showing an excellent agreement
with measured data. The main problem with this semi-analytical
model is that is only valid for atmospheres whose conductivity
profile shows the two-slopes behavior, and even in these cases,
the model parameters must be adjusted to that particular case. In
other words, the model is not directly exportable to other plan-
etary atmospheres without specific calibration in contrast to the
proposed FDTD solution which only requires the inclusion of
the conductivity profile and boundaries of the atmosphere under
study.

To summarize, despite the different methods used to evaluate
Schumann frequencies shown in Table II, the results obtained
with our FDTD numerical scheme are in good agreement with
the experimental ones, and also with the two-scale height iono-
spheric model. From our knowledge, summarized in Table II,
our FDTD numerical scheme provides the best numerical ap-
proach from the 1st to the 4th Schumann resonances, having
lower deviation than other existing numerical approximations.
Deviation ranges from 3% (third mode) to 10% (second mode),
whereas TLM results show deviations ranging from 6.4% (first
mode) to 13% (fourth mode). These deviations are associated
to the contribution of different parts of the numerical model, the

inherent numerical errors of FDTD, and FFT sensitivity. Also it
is associated to the model of ionosphere that does not include
the differences between day time and night time. It is very dif-
ficult to make the separation between all these errors. We be-
lieve that the main source of errors is associated to day-night-
time changes in ionosphere. Our results are also more accurate
than the results presented by Simpson and Taflove for the first
mode [8] using a 2-D FDTD scheme. However, the accuracy of
the presented scheme is globally overcome by the semi-analyt-
ical two-scale height ionospheric model. This semi-analytical
method adjusts the conductivity profile to obtain the Schumann
resonance frequencies, whereas in numerical methods the con-
ductivity is a given parameter. Then, numerical procedures as
our FDTD scheme, either 2-D FDTD or TLM provide a more
flexible and also a more general solution.

IV. CONCLUSION

A three-dimensional (3-D) spherical FDTD model of the ter-
restrial atmosphere was presented in this paper. An important
reduction of the computational cost has been achieved consid-
ering the symmetries of the problem. For the first time, numer-
ical FDTD frequencies for the first four Schumann resonances
are obtained with an acceptable computational cost and a good
accuracy.

A lossless FDTD model of the Earth’s atmosphere was first
developed in order to validate the technique by comparison with
existing analytical values [10]. Better accuracy can be achieved
when a more complete model including the conductivity profile
of the atmosphere and losses at the ionosphere layers is intro-
duced. Results show comparable accuracy to semi-analytical re-
sults obtained with the widely accepted two-scale height iono-
spheric model and better than other numerical results derived
from other techniques. Therefore, the proposed FDTD scheme
may be considered as a valid procedure to study the electrical
properties of the atmosphere of the Earth and other celestial
bodies.

ACKNOWLEDGMENT

The authors would like to thank Profs. D. Bull and J. P.
McGeehan for provision facilities at the Electrical and Elec-
tronic Engineering Department of the University of Bristol,
Bristol, U.K.

REFERENCES

[1] W. Schumann, “Über die stralungslosen eigenschwingungen einer lei-
tenden kugel die von luftschicht und einer ionosphärenhülle umgeben
ist,” Z. Naturforsch A, vol. 7, pp. 149–154, 1952.

[2] M. Balser and C. Wagner, “Observations of earth-ionosphere cavity res-
onances,” Nature, vol. 188, pp. 638–641, 1960.

[3] E. Williams, “The Schumann resonance: A global tropical ther-
mometer,” Sci., vol. 256, pp. 1184–1187, 1992.

[4] K. Schwingenschuch, G. Molina-Cuberos, W. Magnes, M. Menvielle,
M. Friedrich, and P. Falkner, “Low frequency electromagnetic waves
near the Martian surface,” in Proc. 2nd NetLander Scientific Workshop,
Nantes, France, 2001.

[5] M. Fulchignoni et al., “The Hyugens atmospheric structure instrument
(HASI),” European Space Agency Scientific Publications, vol. 1177, pp.
163–176, 1997.

[6] J. R. Wait, Electromagnetic Waves in Stratified Media, 2nd ed, U.K.:
Pergamon, 1970.



SORIANO et al.: FDTD SIMULATION OF EARTH-IONOSPHERE RESONANT CAVITY 1541

[7] S. Cummer, “Modeling electromagnetic propagation in the earth-iono-
sphere waveguide,” IEEE Trans. Antennas Propag., vol. 49, no. 9, pp.
1420–1429, Sep. 2000.

[8] J. Simpson and A. Taflove, “Two-dimensional FDTD model of antipodal
ELF propagation and Schumann resonance of the earth,” IEEE Antennas
Wireless Propag. Lett., vol. 1, pp. 53–56, 2002.

[9] K. Schlegel and M. Füllekrug, “Schumann resonance parameter changes
during high-energy particle precipitation,” J. Geophys. Res., vol. 104, no.
A5, pp. 10 111–10 118, 1999.

[10] J. Morente, J. Molina-Cuberos, J. Portí, B. Besser, A. Salinas, K.
Schwingenschuch, and H. Litchengger, “A numerical simulation of
earth’s electromagnetic cavity with the transmission line matrix method:
Schumann resonances,” J. Geophys. Res., vol. 108, no. A5, 2003.

[11] E. A. Navarro, C. Wu, P. Chung, and J. Litva, “Sensitivity analysis of
nonorthogonal FDTD method applied to the study of square coaxial
waveguide structures,” Microwave Opt. Technol. Lett., vol. 8, pp.
138–140, Feb. 1995.

[12] E. A. Navarro, J. Segura, A. Soriano, and V. Such, “Modeling of thin
curved sheets with the curvilinear FDTD,” IEEE Trans. Antennas
Propag., vol. 52, no. 1, pp. 342–346, Jan. 2004.

[13] M. Fusco, M. Smith, and W. Lawrence, “A three-dimensional FDTD
algorithm in curvilinear coordinates,” IEEE Trans. Antennas Propag.,
vol. 39, no. 10, pp. 1463–1471, Oct. 1991.

[14] R. Holland, L. Simpson, and K. Kunz, “Finite-difference analysis of
EMP coupling to lossy dielectric structures,” IEEE Trans. Electromagn.
Compat., vol. EMC-22, pp. 203–209, Aug. 1980.

[15] D. Sentman, “Approximate Schumann resonance parameters for two-
scale height ionosphere,” J. Atmospheric Terrestrial Phys., vol. 52, no.
1, pp. 35–46, 1990.

Antonio Soriano was born in Benaguasil (Valencia),
Spain, in 1978. He received the Licenciado degree
in physics from the University of Valencia, Valencia,
Spain, in 2001. He has been a Ph.D. student in the
University of Granada, Granada, Spain, since 2002.

His research interest is focused on numerical mod-
eling of electromagnetic wave-propagation using the
FDTD technique.

Enrique A. Navarro was born in Sueca, Spain, in
1965. He received the Licenciado and the Ph.D. de-
grees in physics from the University of Valencia, Va-
lencia, Spain, in 1988 and 1992, respectively.

From 1988 to 1989, he was with Grupo de
Mecánica del Vuelo S.A. (GMV S.A.), Madrid,
Spain. He joined the Department of Applied Physics
at the University of Valencia, in 1989 where he is
presently a Professor. In 1994 and 1995, he was
with the Communications Research Laboratory,
McMaster University, Canada. His current research

interests include all aspects of numerical methods in electromagnetics, antennas
and propagation.

Dr. Navarro was the recipient of a 1993 NATO Fellowship.

Dominique L. Paul received the D.E.A. degree in
electronics from Brest University, Brest, France,
in June 1986 and the Ph.D. degree from Ecole
Nationale Superieure des Telecommunications de
Bretagne, Brest, France, in January 1990.

From 1990 to 1994, she was a Research Associate
at the Centre for Communications Research, Univer-
sity of Bristol, Bristol, U.K. During 1995 to 1996,
she worked as a Research Associate at the Escuela
Tecnica Superior de Ingenieros de Telecomunicacion
of Madrid, Madrid, Spain under a grant from the

Spanish Government. Since 1997, she has been a Research Fellow in the
Centre for Communications Research, University of Bristol, with a permanent
position since 2003. She has published over 20 papers in conferences and
refereed journals. Her research interests include the electromagnetic modeling
of passive devices such as microwave heating systems, dielectric structures at
millimeter wavelengths, low profile antennas and conformal antenna arrays.

Dr. Paul is a Member of IEEE Antennas and Propagation Society and IEEE
Microwave Theory and Techniques Society.

Jorge A. Portí was born in Cartagena, Spain, in
1968. He received the Licenciado in Physics degree
and the Ph.D. degree from the University of Granada,
Granada, Spain, in 1986 and 1994, respectively.

In 1990, he joined the Applied Physics Department
at the University of Granada where he is now a Pro-
fessor. His research interest is focussed on the numer-
ical modeling of electromagnetic and acoustic wave-
propagation phenomena using the transmission line
modeling method. His contributions are concerned
with the method fundamentals and also with partic-

ular electromagnetic applications. He is currently working in the modeling of
electromagnetic propagation through planetary atmospheres and through media
with time-varying properties.

Juan A. Morente was born in Porcuna (Jaén), Spain,
in 1955. He received the Licenciado and Doctor
degrees in Physics from the University of Granada,
Granada, Spain, in 1980 and 1985, respectively.

He is presently “Profesor Titular” in the De-
partment of Applied Physics at the University
of Granada. His main fields of interest include
electromagnetic theory and applied mathematics.
His current research activities deal with analytical
and numerical methods especially for transient
electromagnetic fields in planetary atmospheres and

for electromagnetic characterization of complex media.

Ian J. Craddock is a Reader in the Centre for
Communications Research (CCR), Department of
Electrical and Electronic Engineering, University of
Bristol, Bristol, U.K. He has active research interests
in wideband antenna design, antenna arrays, MIMO,
electromagnetic analysis and microwave radar for
breast cancer detection. He is part of the EU Frame-
work 6 Antennas Network of Excellence, where he
leads a work-package on antennas for GPR, and is a
U.K. representative on COST action 284 (Innovative
Antennas for Emerging Terrestrial & Space-based

Applications).


	toc
	Finite Difference Time Domain Simulation of the Earth-Ionosphere
	Antonio Soriano, Enrique A. Navarro, Dominique L. Paul, Jorge A.
	I. I NTRODUCTION
	II. N UMERICAL M ODEL
	A. FDTD Technique in Spherical Coordinates


	Fig.€1. FDTD node in spherical coordinates.
	Fig.€2. FDTD-grid normal to the radial component in the northern
	B. Handling of the Discontinuities in the System

	Fig.€3. Detail of the north pole discontinuity.
	Fig.€4. FDTD grid used to compute Schumann resonances.
	C. Reduction of Modeling Requirements
	D. Treatment of Losses

	Fig.€5. Conductivity profile of the terrestrial atmosphere.
	III. N UMERICAL R ESULTS

	TABLE I T HEORETICAL AND N UMERICAL R ESONANT F REQUENCIES ( IN 
	Fig.€6. Spectral response at equator points.
	TABLE II R ESONANT F REQUENCIES ( IN H ERTZ ) AND P ERCENTAGE D 
	IV. C ONCLUSION
	W. Schumann, Über die stralungslosen eigenschwingungen einer lei
	M. Balser and C. Wagner, Observations of earth-ionosphere cavity
	E. Williams, The Schumann resonance: A global tropical thermomet
	K. Schwingenschuch, G. Molina-Cuberos, W. Magnes, M. Menvielle, 
	M. Fulchignoni et al., The Hyugens atmospheric structure instrum
	J. R. Wait, Electromagnetic Waves in Stratified Media, 2nd ed, U
	S. Cummer, Modeling electromagnetic propagation in the earth-ion
	J. Simpson and A. Taflove, Two-dimensional FDTD model of antipod
	K. Schlegel and M. Füllekrug, Schumann resonance parameter chang
	J. Morente, J. Molina-Cuberos, J. Portí, B. Besser, A. Salinas, 
	E. A. Navarro, C. Wu, P. Chung, and J. Litva, Sensitivity analys
	E. A. Navarro, J. Segura, A. Soriano, and V. Such, Modeling of t
	M. Fusco, M. Smith, and W. Lawrence, A three-dimensional FDTD al
	R. Holland, L. Simpson, and K. Kunz, Finite-difference analysis 
	D. Sentman, Approximate Schumann resonance parameters for two-sc



