29 research outputs found

    Identification of binary cellular automata from spatiotemporal binary patterns using a fourier representation

    Get PDF
    The identification of binary cellular automata from spatio-temporal binary patterns is investigated in this paper. Instead of using the usual Boolean or multilinear polynomial representation, the Fourier transform representation of Boolean functions is employed in terms of a Fourier basis. In this way, the orthogonal forward regression least-squares algorithm can be applied directly to detect the significant terms and to estimate the associated parameters. Compared with conventional methods, the new approach is much more robust to noise. Examples are provided to illustrate the effectiveness of the proposed approach

    On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applications to communications

    Get PDF
    In Part 1, we found a closed-form expression for the expected complexity of the sphere-decoding algorithm, both for the infinite and finite lattice. We continue the discussion in this paper by generalizing the results to the complex version of the problem and using the expected complexity expressions to determine situations where sphere decoding is practically feasible. In particular, we consider applications of sphere decoding to detection in multiantenna systems. We show that, for a wide range of signal-to-noise ratios (SNRs), rates, and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real-time-a result with many practical implications. To provide complexity information beyond the mean, we derive a closed-form expression for the variance of the complexity of sphere-decoding algorithm in a finite lattice. Furthermore, we consider the expected complexity of sphere decoding for channels with memory, where the lattice-generating matrix has a special Toeplitz structure. Results indicate that the expected complexity in this case is, too, polynomial over a wide range of SNRs, rates, data blocks, and channel impulse response lengths

    Identification of probabilistic cellular automata

    Get PDF
    The identification of probabilistic cellular automata (PCA) is studied using a new two stage neighborhood detection algorithm. It is shown that a binary probabilistic cellular automaton (BPCA) can be described by an integer-parameterized polynomial corrupted by noise. Searching for the correct neighborhood of a BPCA is then equivalent to selecting the correct terms which constitute the polynomial model of the BPCA, from a large initial term set. It is proved that the contribution values for the correct terms can be calculated independently of the contribution values for the noise terms. This allows the neighborhood detection technique developed for deterministic rules in to be applied with a larger cutoff value to discard the majority of spurious terms and to produce an initial presearch for the BPCA neighborhood. A multiobjective genetic algorithm (GA) search with integer constraints is then evolved to refine the reduced neighborhood and to identify the polynomial rule which is equivalent to the probabilistic rule with the largest probability. A probability table representing the BPCA can then be determined based on the identified neighborhood and the deterministic rule. The new algorithm is tested over a large set of one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) BPCA rules. Simulation results demonstrate the efficiency of the new method

    Finding a closest point in a lattice of Voronoi's first kind

    Get PDF
    We show that for those lattices of Voronoi's first kind with known obtuse superbasis, a closest lattice point can be computed in O(n4)O(n^4) operations where nn is the dimension of the lattice. To achieve this a series of relevant lattice vectors that converges to a closest lattice point is found. We show that the series converges after at most nn terms. Each vector in the series can be efficiently computed in O(n3)O(n^3) operations using an algorithm to compute a minimum cut in an undirected flow network

    On the sphere-decoding algorithm I. Expected complexity

    Get PDF
    The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The problem is equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In communications applications, however, the given vector is not arbitrary but rather is an unknown lattice point that has been perturbed by an additive noise vector whose statistical properties are known. Therefore, in this paper, rather than dwell on the worst-case complexity of the integer least-squares problem, we study its expected complexity, averaged over the noise and over the lattice. For the "sphere decoding" algorithm of Fincke and Pohst, we find a closed-form expression for the expected complexity, both for the infinite and finite lattice. It is demonstrated in the second part of this paper that, for a wide range of signal-to-noise ratios (SNRs) and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real time - a result with many practical implications
    corecore