1,679 research outputs found

    Core congestion is inherent in hyperbolic networks

    Full text link
    We investigate the impact the negative curvature has on the traffic congestion in large-scale networks. We prove that every Gromov hyperbolic network GG admits a core, thus answering in the positive a conjecture by Jonckheere, Lou, Bonahon, and Baryshnikov, Internet Mathematics, 7 (2011) which is based on the experimental observation by Narayan and Saniee, Physical Review E, 84 (2011) that real-world networks with small hyperbolicity have a core congestion. Namely, we prove that for every subset XX of vertices of a δ\delta-hyperbolic graph GG there exists a vertex mm of GG such that the disk D(m,4δ)D(m,4 \delta) of radius 4δ4 \delta centered at mm intercepts at least one half of the total flow between all pairs of vertices of XX, where the flow between two vertices x,yXx,y\in X is carried by geodesic (or quasi-geodesic) (x,y)(x,y)-paths. A set SS intercepts the flow between two nodes xx and yy if SS intersect every shortest path between xx and yy. Differently from what was conjectured by Jonckheere et al., we show that mm is not (and cannot be) the center of mass of XX but is a node close to the median of XX in the so-called injective hull of XX. In case of non-uniform traffic between nodes of XX (in this case, the unit flow exists only between certain pairs of nodes of XX defined by a commodity graph RR), we prove a primal-dual result showing that for any ρ>5δ\rho>5\delta the size of a ρ\rho-multi-core (i.e., the number of disks of radius ρ\rho) intercepting all pairs of RR is upper bounded by the maximum number of pairwise (ρ3δ)(\rho-3\delta)-apart pairs of RR

    The parallel approximability of a subclass of quadratic programming

    Get PDF
    In this paper we deal with the parallel approximability of a special class of Quadratic Programming (QP), called Smooth Positive Quadratic Programming. This subclass of QP is obtained by imposing restrictions on the coefficients of the QP instance. The Smoothness condition restricts the magnitudes of the coefficients while the positiveness requires that all the coefficients be non-negative. Interestingly, even with these restrictions several combinatorial problems can be modeled by Smooth QP. We show NC Approximation Schemes for the instances of Smooth Positive QP. This is done by reducing the instance of QP to an instance of Positive Linear Programming, finding in NC an approximate fractional solution to the obtained program, and then rounding the fractional solution to an integer approximate solution for the original problem. Then we show how to extend the result for positive instances of bounded degree to Smooth Integer Programming problems. Finally, we formulate several important combinatorial problems as Positive Quadratic Programs (or Positive Integer Programs) in packing/covering form and show that the techniques presented can be used to obtain NC Approximation Schemes for "dense" instances of such problems.Peer ReviewedPostprint (published version
    corecore