72,926 research outputs found

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Towards the architecture of an instructional multimedia database

    Get PDF
    The applicability of multimedia databases in education may be extended if they can serve multiple target groups, leading to affordable costs per unit for the user. In this contribution, an approach is described to build generic multimedia databases to serve that purpose. This approach is elaborated within the ODB Project ('Instructional Design of an Optical DataBase'); the term optical refers to the use of optical storage media to hold the audiovisual components. The project aims at developing a database in which a hypermedia encyclopedia is combined with instructional multimedia applications for different target groups at different educational levels. The architecture of the Optical Database will allow for switching between application types while working (for instance from tutorial instruction via the encyclopedia to a simulation and back). For instruction, the content of the database is thereby organized around so-called standard instruction routes: one route per target group. In the project, the teacher is regarded as the manager of instruction.\ud \ud From that perspective, the database is primarily organized as a teaching facility. Central to the research is the condition that the architecture of the Optical Database has to enable teachers to select and tailor instruction routes to their needs in a way that is perceived as logical and easy to use

    A story environment for learning object annotation and collection : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    With the increase in computer power, network bandwidth and availability, e-learning is used more and more widely. In practice e-learning can be applied in a variety of ways, such as providing electronic resources to support teaching and learning, developing computer based tutoring programs or building computer supported collaborative learning environments. Nowadays e-learning becomes significantly important because it can improve the quality of learning through using interactive computers, online communications and information systems in ways that other teaching methods cannot achieve. The important advantage of e-learning is that it offers learners a large amount of sharable and reusable learning resources. The current approaches such as Internet search and learning object repository does not effectively help users to search for appropriate learning objects. The original story concept introduces a new semantic layer between collections of learning objects and learning material. The basic idea of the story concept is to add an interpretative, semantically rich layer, informally called 'Story' between learning objects and learning material that links learning objects according to specific themes and subjects (Heinrich & Andres, 2003a). One motivation behind this approach is to put a more focused, semantic layer on top of untargeted metadata that are commonly used to describe a single learning object. Speaking from an e-learning context the stories build on learning objects and become information resources for learning material. The overall aim of this project was to design and build a story environment to realize the above story concept. The development of the story environment includes story metadata, story environment components, the story browsing and authoring processes, and tools involved in story browsing and authoring. The story concept suggests different types of metadata should be used in a story. This project developed those different metadata specifications to support story environment. Two prototypes of tools have been designed and implemented in this project to allow users to evaluate the story concept and story environment. The story browser helps story readers to read the story narrative and look at a story from different perspectives. The story authoring tool is used by the story authors to author a story. The future work of this project has been identified in the area of adding features of current tools, user testing and further implementation of the story environment

    Semantic web technology for web-based teaching and learning: A roadmap

    Get PDF
    The World-Wide Web has become the predominant platform for computer-aided instruction. Contentorientation, access and interactive features have made the Web a successful technology. The Web, however, is still evolving. We expect in particular Semantic Web technology to substantially impact Web-based teaching and learning. In this paper, we examine the potential of this technology and how we expect it to influence content representation and the work of the instructor and the learner

    An E-Learning Investigation into Learning Style Adaptivity

    Get PDF
    Abstrac

    Model-driven description and validation of composite learning content

    Get PDF
    Authoring of learning content for courseware systems is a complex activity requiring the combination of a range of design and validation techniques. We introduce the CAVIAr courseware models allowing for learning content description and validation. Model-based representation and analysis of different concerns such as the subject domain, learning context, resources and instructional design used are key contributors to this integrated solution. Personalised learning is particularly difficult to design as dynamic configurations cannot easily be predicted and tested. A tool-supported technique based on CAVIAr can alleviate this complexity through the validation of a set of pedagogical and non-pedagogical requirements. Courseware validation checks intra- and inter-content relationships and the compliance with requirements and educational theories

    Model-driven transformation and validation of adaptive educational hypermedia using CAVIAr

    Get PDF
    Authoring of Adaptive Educational Hypermedia is a complex activity requiring the combination of a range of design and validation techniques.We demonstrate how Adaptive Educational Hypermedia can be transformed into CAVIAr courseware validation models allowing for its validation. The model-based representation and analysis of different concerns and model-based mappings and transformations are key contributors to this integrated solution. We illustrate the benefits of Model Driven Engineering methodologies that allow for interoperability between CAVIAr and a well known Adaptive Educational Hypermedia framework. By allowing for the validation of Adaptive Educational Hypermedia, the course creator limits the risk of pedagogical problems in migrating to Adaptive Educational Hypermedia from static courseware
    corecore